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Abstract: The phase diagram of large Nc, weakly-coupled N = 4 supersymmetric Yang-

Mills theory on a three-sphere with non-zero chemical potentials is examined. In the zero

coupling limit, a transition line in the µ-T plane is found, separating a “confined” phase

in which the Polyakov loop has vanishing expectation value from a “deconfined” phase

in which this order parameter is non-zero. For non-zero but weak coupling, perturba-

tive methods may be used to construct a dimensionally reduced effective theory valid for

sufficiently high temperature. If the maximal chemical potential exceeds a critical value,

then the free energy becomes unbounded below and no genuine equilibrium state exists.

However, the deconfined plasma phase remains metastable, with a lifetime which grows

exponentially with Nc (not N2
c ). This metastable phase persists with increasing chemical

potential until a phase boundary, analogous to a spinodal decomposition line, is reached.

Beyond this point, no long-lived locally stable quasi-equilibrium state exists.

The resulting picture for the phase diagram of the weakly coupled theory is compared

with results believed to hold in the strongly coupled limit of the theory, based on the

AdS/CFT correspondence and the study of charged black hole thermodynamics. The con-

finement/deconfinement phase transition at weak coupling is in qualitative agreement with

the Hawking-Page phase transition in the gravity dual of the strongly coupled theory. The

black hole thermodynamic instability line may be the counterpart of the spinodal decom-

position phase boundary found at weak coupling, but no black hole tunneling instability,

analogous to the instability of the weakly coupled plasma phase is currently known.
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1. Introduction

The large Nc limit of a gauge theory [1] is a type of classical limit [2], and greatly simplifies

the structure of the theory. Generalizing QCD from three to a large number Nc of colors

may appear to be a drastic modification, but the Nc =∞ theory exhibits many qualitative

similarities to real QCD [3, 4]. However, there are important differences as well. For ex-

ample, while real QCD (or any normal theory) can only develop genuine phase transitions
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in the infinite volume limit, Nc =∞ theories may have phase transitions even in finite vol-

ume, because the Nc →∞ limit acts as a thermodynamic limit. One well-known example

of this type is the Gross-Witten transition in two-dimensional U(Nc) gauge theories [5].

More recently, large Nc gauge theories on a finite radius three-sphere at non-zero

temperature have been studied by Sundborg [6], and independently by Aharony et al. [7, 8].

These theories were found to have phase transitions even in the limit of zero gauge coupling.

Relevant order parameters include the Polyakov loop and the dependence of free energy

on Nc. In the high temperature phase, the Polyakov loop expectation value is non-zero,

the associated center symmetry is spontaneously broken, and the free energy scales as N 2
c

as Nc → ∞. In the low temperature phase, the Polyakov loop has vanishing expectation

value, the center symmetry is unbroken, and the free energy is order one with respect to Nc

(i.e., the free energy has a finite Nc →∞ limit). In finite volume one cannot operationally

define confinement in terms of the free energy needed to separate a static test quark and

antiquark to infinity. Nevertheless, we will refer to these phases as “deconfined” and

“confining,” respectively, because the corresponding phases of SU(Nc) Yang-Mills theory

in infinite volume show exactly the same features. The reader should bear in mind that

the justification for this terminology comes only from the center symmetry realization and

the Nc dependence of the free energy.

In this paper we consider N = 4 supersymmetric Yang-Mills theory (SYM) with gauge

group SU(Nc), on a three-sphere of radius R and in the presence of non-zero chemical

potentials associated with the global R-symmetry. Our goal is to understand the phase

structure of the theory as a function of both temperature and chemical potential. We will

focus on the weakly coupled limit of the theory, but will compare results with those which

are believed to hold in the strongly coupled limit of the theory, based on the study of

solutions of the dual gravitational theory.

The outline of this paper is as follows. In section 2, we consider the phase structure

of N = 4 super-Yang-Mills theory on a sphere with R-symmetry chemical potentials, in

the limit of zero gauge coupling. section 3 examines the theory with non-zero but weak

coupling in the high temperature regime (i.e., inverse temperature small compared to the

radius of the spatial three-sphere). In this regime, we construct a dimensionally reduced

effective field theory. We compute terms in the resulting effective action up to fourth order

in the scalar fields, and evaluate the complete one-loop scalar field effective potential in

the special case where the fields take values in the flat directions of the tree-level potential.

section 4 discusses the resulting high temperature thermodynamics and, in particular,

the instability of the theory at sufficiently large chemical potential. We summarize the

results of our weak-coupling analysis in section 5 and compare with strong-coupling results

obtained from the dual gravitational theory. Some possible extensions are discussed briefly

in section 6.

appendix A contains details of the reduction of the zero coupling partition function to

the matrix model discussed in section 2. Appendix B presents the one-loop diagrammatic

calculations whose results are summarized in section 3. Appendix C contains the details

of the evaluation of the one-loop scalar field effective potential, using a background field

method, when the fields lie along flat directions.
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The remainder of this introduction summarizes previous work on the thermodynamics

of N = 4 super-Yang-Mills theory on a sphere. We begin with strong-coupling results which

emerge from the AdS/CFT correspondence (or gauge/string duality). This correspondence,

which remains unproven but which has passed a great many consistency checks, originated

from the congruence of two apparently different theories: Type IIB supergravity on AdS5×
S5 and large Nc N = 4 super-Yang-Mills theory [9, 10]. The field theory may be regarded

as living on the R × S3 boundary of AdS5 space [11]. The correspondence between bulk

and boundary spaces extends to more general cases including ones where the boundary

is S1 × S3. The field theory that lives on this manifold is naturally viewed as a finite

temperature field theory, with the temperature equaling the inverse of the S 1 circumference.

For an S1 × S3 boundary, there are two possible bulk geometries. One is (Euclidean

signature) AdS5/Z with the discrete group Z acting freely on the AdS space, so the resulting

manifold is smooth but topologically nontrivial. This gives rise to two spin structures

over the manifold. The other bulk manifold with boundary S1 × S3 is the (Euclidean

signature) Schwarzschild-AdS black hole. This manifold is topologically trivial, and allows

a single spin structure. Thus, the sector of AdS5/Z geometry which has the same spin

structure as the one in Schwarzschild-AdS may flop into Schwarzschild-AdS by a phase

transition. This is the Hawking-Page phase transition [12] and, as argued by Witten [13],

the signature of this transition in the dual thermal field theory on S1 × S3 should be a

confinement/deconfinement phase transition.

Various systems that generalize this idea have also been studied. These include, on the

gravity side, the thermodynamics of rotating black holes. A rotation may be given either

to the AdS5 bulk or to the internal S5 sphere. The former is the Kerr-AdS black hole

and the latter, as seen from the bulk, gives rise to the Reissner-Nordström-AdS (RN-AdS)

black hole through the usual Kaluza-Klein mechanism whereby momenta in compact extra

dimensions appear as charges in the bulk. It is this latter system which is of interest here.

The action that governs the bulk thermodynamics is the five dimensional Einstein-

Maxwell action with negative cosmological constant (and Euclidean signature).1 This ac-

tion has two saddle points. One is AdS space without a black hole, the other is the RN-AdS

black hole. One may use either the Reissner-Nordström charge, or the associated chemical

potential to parameterize these solutions.2 For the grand canonical ensemble, the relevant

parameters are temperature and chemical potential. The equilibrium state of the system

corresponds to whichever of the two saddle point configurations minimizes the free energy

(which corresponds to the gravity action minus an appropriate boundary term [15, 16]).

1When the S5 rotates equally in three independent planes, the resulting thermodynamics is described

by the Einstein-Maxwell action. For the more general case of unequal rotations, the action is that of

five dimensional N = 8 gauged supergravity. This is a generalization of the Einstein-Maxwell action and

contains scalar fields which couple to the Maxwell fields. Solutions to the equations of motion have been

obtained by Behrndt et al. [14]; the resulting black hole solutions are similar to the RN-AdS solution of the

Einstein-Maxwell action.
2Due to the analytic continuation from Minkowski to Euclidean signature, the time component of the

Maxwell field is pure imaginary, so the parallel transporter of the gauge field around the S1 boundary circle

is not a pure phase, but rather a real number whose logarithm equals the chemical potential divided by the

temperature.
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Figure 1: Illustrations of previous results for the phase diagram of N = 4 large Nc super-Yang-

Mills theory as a function of temperature and chemical potential. The left hand figure depicts free

field results from the zero coupling limit of the theory while the right hand figure comes from the

analysis of the Einstein-Maxwell gravitational system (with three equal charges) which is believed

to be dual to the strong coupling limit of the gauge theory.

The resulting phase diagram has a transition line separating these two phases, drawn as the

dashed line in the right hand diagram of figure 1. This is the generalization of the Hawking-

Page phase transition to non-zero charge; the original Hawking-Page transition is indicated

in the figure by the dot on the temperature axis at zero chemical potential. This transition

between AdS and RN-AdS black hole solutions is a first order phase transition [17].

Cvetic and Gubser analyzed the thermodynamic stability of the black holes [18] and

found an instability line in the phase diagram (in addition to the Hawking-Page phase

transition line). Beyond the instability line, the black hole that extremizes the Euclidean

action becomes a saddle point; this corresponds to a thermodynamic instability. The

instability line is indicated by the solid line in the right hand diagram of figure 1.3

A natural question is the fate of the theory beyond this instability line. For the

case of the RN-AdS black hole in four dimensions, Gubser and Mitra [19] found that the

instability point is almost exactly where supergravity develops tachyonic modes. (There

is 0.7% numerical discrepancy which is believed to be a numerical analysis artifact.) It is

generally presumed that the theory enters a new phase beyond the instability line. But in

the absence of any explicit solution corresponding to such a putative new phase, it is also

possible that this line represents a genuine boundary to the phase diagram, beyond which

3There are three possible conserved charges corresponding to three independent rotational planes of S5.

figure 1 illustrates the case with three equal charges, where the supergravity action reduces to Einstein-

Maxwell. (ref. [18] uses a different parametrization in plotting the phase diagram. After recasting their

equations for the instability line in terms of temperature and chemical potential, one finds a result of the

form shown in figure 1.) For other charge configurations, such as a single non-zero charge, we find a phase

diagram with similar general structure, but in which the Hawking-Page transition line meets the instability

line at a non-zero temperature (where the horizon radius shrinks to zero). For these more general cases, the

behavior of the system at temperatures below that corresponding to zero horizon radius is not currently

understood. We will discuss this further in section 5.
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no equilibrium state exists. This would be analogous to the situation at zero coupling,

discussed below. In short, the fate of the theory beyond the instability line is not currently

known.

We now turn to previous work on the thermodynamics of weakly coupled SU(Nc)N = 4

super-Yang-Mills theory with non-zero chemical potentials for R-charges, in the large Nc

limit. If one considers the theory on flat space and introduces any non-zero chemical

potential, then there is an immediate problem — no ground state (or grand canonical

equilibrium state) exists. A chemical potential acts like a negative mass squared for the

scalar fields. Due to conformal symmetry, this theory (on flat space) has no mass term.

Because there are flat directions in the super-potential, any non-zero chemical potential

immediately destabilizes the theory.

Compactifying space by replacing flat R3 with a three-sphere of radius R avoids this

problem. The coupling of the scalar fields to the spacetime curvature acts like a positive

mass squared and allows one to introduce non-zero chemical potentials, provided they are

sufficiently small. In the limit of zero gauge coupling, the maximum chemical potential

equals the curvature-induced scalar mass, namely 1/R. For larger chemical potentials, the

theory is again unstable and no equilibrium state exists. Hence, as illustrated on the left

in figure 1, in the free field theory the line µ = 1/R is a boundary of the phase diagram

(just like the T = 0 line) and is not a phase transition line.

This point of instability has been referred to as “Bose-Einstein condensation” in the

AdS/CFT literature (e.g., refs. [20, 21]) but this is highly mis-leading terminology. In

an interacting system, Bose-Einstein condensation corresponds to spontaneous symmetry

breaking of a global U(1) symmetry. In a µ-T phase diagram, a Bose-Einstein condensation

line is a phase transition line separating distinct phases — it is not a boundary of the phase

diagram.

In the free theory on S3 without a chemical potential one finds [6, 7], a “confine-

ment/deconfinement” phase transition as the temperature is increased, as noted earlier.

This is indicated by the dot on the temperature axis at zero chemical potential on the left

side of figure 1.

Hawking and Reall [21], considering the free theory on S3 with a chemical potential,

noted the phase boundary at µ = 1/R, but did not find any confinement/deconfinement

transition and concluded that the free field theory in this particular system is qualitatively

different from the conjectured strongly coupled dual gravity system. However, these authors

ignored the constraint of Gauss’ law and the associated requirement that physical states be

gauge invariant. It is the restriction to gauge invariant states which is responsible for the

confinement/deconfinement transition at vanishing chemical potential [6, 7]. Maintaining

Gauss’ law, even at zero coupling, is necessary to obtain valid results for the limiting weak

coupling behavior of the interacting theory. In section 2 we reanalyze the free theory

with non-zero chemical potentials and the Gauss law constraint, and show that there is

a confinement/deconfinement phase transition line which connects the µ = 0, T 6= 0

transition point with the zero temperature limit of stability point at µ = 1/R and T = 0.

From figure 1, one may also note differences in the instability/phase-boundary lines.

In the strong-coupling gravity dual, the chemical potential grows with temperature on
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the instability line [18] and at asymptotically high temperatures, the instability line rises

linearly. In the free field theory, the limiting chemical potential defining the phase diagram

boundary is independent of temperature and, as we show below, is unaffected by the

imposition of Gauss’ law. In section 3 we consider the theory at non-zero but small coupling,

and high temperature, and find that a thermal mass is generated in addition to the spatial

curvature induced mass. The resulting effective scalar mass (squared) remains positive

until one reaches a “spinodal decomposition” line on which the chemical potential also

rises linearly at asymptotically high temperatures. This is discussed further in section 4.

As this work was nearing completion, we became aware of the recent work of Basu

and Wadia [22], which discusses the canonical emsenble of N = 4 super-Yang-Mills theory

with fixed R-charges, instead of fixed chemical potentials. These authors examined an

approximation to the zero coupling limit of the gauge invariant partition function with a

projection onto states of a given R-charge, and found multiple saddle points with differing

(but always non-zero) expectation values for the Polyakov loop. They also constructed a

simple model illustrating the effect of turning on a weak coupling, and discussed similarities

between their model’s results and properties of R-charged anti-de-Sitter black holes. At

first sight, the results of ref. [22] appear quite different from the picture of the N = 4 phase

diagram which emerges from our analysis. However, as we discuss in section 2.6, proper

consideration of the relation between canonical and grand canonical ensembles near a first

order phase transition shows that the qualitative results of ref. [22] are consistent with our

phase structure.

2. Zero coupling limit

Consider free N = 4 SU(Nc) supersymmetric Yang-Mills theory on S3. This field theory

has a global SU(4) R-symmetry (denoted SU(4)R) and one may introduce chemical po-

tentials coupled to the corresponding conserved charges. It should be emphasized that

the “free” gauge theory considered in this section is the zero coupling limit of the theory

while retaining Gauss’ law. This is appropriate since Gauss’ law holds and physical states

are necessarily gauge invariant at all non-zero values of the coupling. In particular, one

must have global charge neutrality of all physical states even with an infinitesimally small

coupling constant.

For free gauge theories on a sphere, there are two equivalent techniques for computing

the resulting partition function: counting gauge invariant states directly, or using a suitable

functional integral representation. The former method, adopted in refs. [6, 23, 7], takes

advantage of the conformal mapping relating operators in the theory on R4 to states of

the theory on the sphere. One counts the number of gauge invariant operators of a given

dimension (which maps to the energy of the state on the sphere), and then sums over all

such operators to obtain the partition function on the sphere.

We choose to employ the functional integral approach (also discussed in ref. [7]) which

represents the projection onto gauge invariant states via an integral over the time com-

ponent of the gauge field. We begin, in subsection 2.1, by reviewing the introduction

of chemical potentials for a maximal Abelian subgroup of a non-Abelian global symme-
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try group, and then in subsection 2.2 write down the Lagrangian of the theory with the

chemical potentials included. Using this Lagrangian, subsection 2.3 presents the matrix

model which describes the partition function of the free theory on the sphere. We sketch

the derivation of this matrix model, but leave details to appendix A. The resulting phase

diagram for the free theory is discussed in subsection 2.4, and shown to have a phase transi-

tion line separating a “confining” low temperature or small chemical potential phase from a

“deconfined” high temperature/large chemical potential phase. In the final subsection 2.5

we show that this is a first order phase transition in the zero coupling limit, but note that

it is possible for the transition to become continuous at any non-zero coupling.

2.1 Chemical potentials for non-abelian symmetries

Consider a system with Hamiltonian Ĥ and internal symmetry group G, assumed to be

a semi-simple compact Lie group. A Cartan subalgebra of G is also a maximal Abelian

subalgebra, with dimension equal to the rank of the group G. Compactness implies that

any group element may be written as the exponential of some element in the Lie algebra.

Let Û(g) be the unitary operator representing an element g of the group, and define

Z(β, g) = tr [Û (g)e−βĤ ] , (2.1)

where β is the inverse temperature. By assumption, Û(g) commutes with Ĥ for all group

elements g. Consequently Z(β, g) is a class function since (using trace cyclicity),

Z(β, g) = tr [Û(η) Û (g) Û (η)−1e−βH ] = tr [Û(ηgη−1) e−βH ] = Z(β, ηgη−1) , (2.2)

for arbitrary η in G. Any group element g is equivalent (under conjugation by group

elements) to some element h of a maximal Abelian subgroup. And any element of a

maximal Abelian subgroup may be expressed as an exponential of a sum of generators of a

Cartan subalgebra, h = eiγpQ̂p where {Q̂p | p=1, . . . , rank(G)} are the generators and {γp}
are real numbers. We are adopting the convention that the generators {Q̂p} are Hermitian.

Therefore, Z(β, g) may be regarded as a function of the rank(G) real variables {γp}, and

rewritten as

Z(β, γp) = tr e−βĤeiγpQ̂p . (2.3)

After an analytic continuation γp → −iβµp, this is the grand canonical partition function

Z(β, µp) ≡ tr exp[−β(Ĥ − µp Q̂p)] , (2.4)

with chemical potentials {µp} associated with a maximal set of commuting conserved

charges {Q̂p}. This illustrates why, given a non-Abelian symmetry group, it is natural

to introduce chemical potentials corresponding to a Cartan subalgebra of the group.4

4See, for example, ref. [24] for a different and perhaps more direct discussion that leads to the same

conclusion.
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Field D.O.F. SU(4)R
φp 6 (N2

c−1) 6

λi 8 (N2
c−1) 4

Aν 2 (N2
c−1) 1

Table 1: Counting of real degrees of freedom, and SU(4)R symmetry representations, for the fields

of N = 4 super-Yang-Mills theory.

2.2 N = 4 super-Yang-Mills lagrangian with chemical potentials

Four dimensional N = 4 super-Yang-Mills theory, in flat space, may be obtained from

dimensional reduction of N = 1 super-Yang-Mills in ten dimensions [25, 26]. We consider

this theory on S1 × S3, and include chemical potentials associated with a U(1)3 maximal

Abelian subgroup of the SU(4) global R-symmetry. As mentioned in the Introduction, this

theory has conformal scalar-curvature coupling terms that will appear as mass terms for

the scalar fields.

To write the Lagrangian, we first determine how the charges Q̂p associated with the

chemical potentials transform each field of the theory. The field content includes six scalars

which we will regard as components of an antisymmetric matrix, φij (i, j = 1, . . . , 4) with

φij = −φji, four (left-handed) Weyl fermions λi, and a vector field Aν , all transforming in

the adjoint representation of the gauge group SU(Nc).

The scalar fields φij are complex, and transform under the antisymmetric representa-

tion 6 of SU(4)R. One may repackage these fields as a 6̄, defined by

φij ≡ 1
2 ε

ijkl φkl . (2.5)

Since the 6̄ representation is the complex conjugate of the 6, it is consistent to impose the

reality condition φij = φ∗ij . More explicitly, this is

φ12 = φ∗34 , φ13 = φ∗42 , φ14 = φ∗23 , (2.6)

and the reality constraint leaves six (times N 2
c − 1) real degrees of freedom in the scalar

fields. To simplify later expressions, we will relabel the three independent complex scalar

fields as

φ1 ≡ φ12 , φ2 ≡ φ13 , φ3 ≡ φ14 . (2.7)

The counting of degrees of freedom, along with transformation properties under the global

SU(4)R symmetry, are summarized in table 1. Note that the total number of degrees of

freedom for bosons and fermions are equal, as usual in supersymmetric theories.

We choose to represent the generators of the Cartan subalgebra, in the fundamental

representation 4, as

Q4
1 = 1

2 diag(1, 1,−1,−1) , (2.8a)

Q4
2 = 1

2 diag(1,−1, 1,−1) , (2.8b)

Q4
3 = 1

2 diag(1,−1,−1, 1) . (2.8c)

– 8 –
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To obtain the corresponding form in the antisymmetric representation 6, one may consider

the transformations of a rank-2 tensor under 4 ⊗ 4. Assembling the six scalars into a

six-component vector via

φT ≡ (φ1, φ
∗
1, φ2, φ

∗
2, φ3, φ

∗
3)T , (2.9)

the Cartan generator matrices in this representation appear as

Q6
1 = diag(1,−1, 0, 0, 0, 0) , (2.10a)

Q6
2 = diag(0, 0, 1,−1, 0, 0) , (2.10b)

Q6
3 = diag(0, 0, 0, 0, 1,−1) . (2.10c)

With these choices, one sees that

3∑

p=1

µpQ
6
p = diag(µ1,−µ1, µ2,−µ2, µ3,−µ3) . (2.11)

Hence,
∑3

p=1 µp Q̂p assigns eigenvalue +µp to φp and assigns −µp to the complex conjugates

φ∗p. For the fermions,
∑3

p=1 µpQ
4
p = diag(µ̃1, µ̃2, µ̃3, µ̃4) with

µ̃1 ≡ 1
2(µ1 + µ2 + µ3), µ̃2 ≡ 1

2(µ1 − µ2 − µ3), (2.12a)

µ̃3 ≡ 1
2(−µ1 + µ2 − µ3), µ̃4 ≡ 1

2(−µ1 − µ2 + µ3), (2.12b)

so the fermion λj has an effective chemical potential µ̃j.

To derive the correct form of the action to use in a functional integral when chemical

potentials are present, one could start from the Lagrangian without chemical potentials,

find the conserved charges of the global symmetry, re-express these in terms of conju-

gate momenta, use this to derive a Hamiltonian path integral representation of the grand

canonical partition function (2.4), and then integrate out the conjugate momenta. But

that is completely unnecessary. It is equivalent, but simpler, to imagine gauging the U(1)3

Abelian global R-symmetry. The time component of such a fictitious gauge field couples

to the conserved U(1)3 R-charge densities, just like the chemical potentials. But the time

component of a gauge field in a Euclidean functional integral corresponds to i times the

Minkowski gauge potential. Consequently, in a Euclidean functional integral, adding chem-

ical potentials is exactly equivalent to turning on a constant imaginary value for the time

component of a background gauge field associated with the U(1)3 global R-symmetry. One

ends up with a standard Euclidean functional integral in which the Lagrangian contains

modified covariant derivatives for the time direction,

Dν → Dν − µpQp δν0 . (2.13)

It will be convenient for later use to rewrite the Weyl fermions as Majorana fermions.

Recall that a massless two-component Weyl fermion λ, in four dimensions, may be con-

verted to a four-component Majorana fermion ψ ≡
(λα
λ̄α̇

)
. The corresponding terms in the

Lagrange density are related via

λα (τν)αβ̇ (
↔
Dν −µ̃ δν,0) λ̄β̇ = 1

2 ψ̄ (D/ − µ̃ γ0γ5)ψ , (2.14)

– 9 –
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where we have defined ψ̄ ≡ (λα, λ̄α̇) and

τν ≡ (1, i~σ) , τ̄ν ≡ (1,−i~σ) , (2.15a)

γν ≡
(

0 τν
τ̄ν 0

)
, γ5 ≡ γ0γ1γ2γ3 =

(
1 0

0 −1

)
. (2.15b)

The Majorana spinors satisfy the condition

ψ = Cψ̄ , (2.16)

where C =
(
εαβ
0

0
εα̇β̇

)
is the charge conjugation matrix with ε12 = −ε21 ≡ −1.

The gauge field Aµ may be regarded as a traceless Hermitian matrix. Equivalently,

it may be expanded as Aµ = Aaµ T
a, with real coefficients {Aaµ} and Hermitian color

generators T a which satisfy

[T a, T b] = ifabc T c , (2.17a)

and

tr (T aT b) = 1
2 δ

ab . (2.17b)

With this choice, the structure constants f abc are real and completely antisymmetric.

The scalar and fermion fields may similarly be expanded in the basis of color generators,

φp = φap T
a and ψi = ψai T

a. The coefficient ψai is a four-component Grassmann-valued

spinor. The conjugate spinor ψ̄ai is not independent, but is related to ψai via the Majorana

condition (2.16). The coefficients φap satisfy the reality condition (2.6) (for each a). It will

be convenient to introduce explicitly independent real scalar fields via φp ≡ (Xp + iYp)/
√

2

and to assemble these into a multiplet,

Φ ≡ (X1, Y1, X2, Y2, X3, Y3) . (2.18)

We will use a capital Latin index to denote components of this vector, so ΦA = Φa
A T

a with

A = 1, . . . , 6.

We are finally ready to write down the N = 4 SYM Lagrange density [25, 26] in

Euclidean signature with the addition of chemical potentials and spatial curvature induced

mass terms:

L = tr
{

1
2(Fµν)2 + (DνXp − iµp δν,0Yp)2 + (DνYp + iµp δν,0Xp)

2 +R−2 (ΦA)2

+ iψ̄i(D/− µ̃i γ0γ5)ψi + 1
2 g

2(i[ΦA,ΦB])2 − g ψ̄i
[
(αpijXp + iβqijγ5Yq), ψj

]}
, (2.19)

where Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] and Dν = ∂ν + ig[Aν , · ]. The indices run over

A,B = 1, . . ., 6, p, q = 1, . . ., 3, i, j = 1, . . ., 4, and a = 1, . . ., N 2
c − 1 (with implied sums

over all indices). The 4× 4 matrices αp and βq satisfy the relations

{αp, αq} = −2 δpq 14×4 , {βp, βq} = −2 δpq 14×4 , [αp, βq] = 0 , (2.20)
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and explicit forms can be given as

α1 =

(
0 σ1

−σ1 0

)
, α2 =

(
0 −σ3

σ3 0

)
, α3 =

(
iσ2 0

0 iσ2

)
, (2.21a)

β1 =

(
0 iσ2

iσ2 0

)
, β2 =

(
0 σ0

−σ0 0

)
, β3 =

(
−iσ2 0

0 iσ2

)
. (2.21b)

The partition function for the grand canonical ensemble has the functional integral repre-

sentation

Z =

∫
DAµ Dψi DΦA e

−
∫
d4x L , (2.22)

where the integral is over fields taking values on S3 (of radius R)× S1 (of radius β), with

the gauge and scalar fields periodic and the Grassmann-valued fermion fields anti-periodic

on the Euclidean time circle.

2.3 Gauge invariant partition function

We want to compute the partition function (2.22) in the free-field limit of the theory, while

preserving the projection onto gauge invariant states which is embodied in the functional

integral over A0. We sketch the calculation here, and leave details to appendix A.

Taking a naive g → 0 limit of the Lagrangian (2.19) is the wrong procedure; this ignores

the special role of A0 as a Lagrange multiplier enforcing Gauss’ law and, as detailed below,

would lead to an ill-defined Gaussian integral due to a zero-mode in the covariance operator

for A0. The physically appropriate limit is obtained by sending g → 0 after separating and

rescaling the constant mode of A0,

A0(x) −→ Ã0(x) + a/g , (2.23)

with Ã0(x) constrained to have a vanishing spacetime integral, and a an arbitrary traceless

Nc × Nc Hermitian constant matrix. The net effect is that the g = 0 functional inte-

gral includes configurations in which parallel transporters around the time circle, U ≡
P (eig

R β
0 dx0 A0), cover the entire gauge group. It is the resulting integration over U which

implements the projection onto gauge invariant states. After suitably fixing a gauge, the

remaining functional integral is a well-defined Gaussian integral over all degrees of freedom

other than a, the constant mode of A0, and a non-Gaussian integral over the single matrix

a.

The Gaussian integral leads to functional determinants of the covariance (or small

fluctuation) operators defined by the quadratic part of the action. For the scalar fields,

this operator involves the sum of the square of a covariant time derivative, which depends

on a and the chemical potentials, a spatial Laplacian, and the curvature-induced mass

term. The gauge field covariance operator and the square of the fermion operator have

completely analogous forms, but with the relevant Laplacian acting on vector or spinor

fields, respectively, and without any mass term. Eigenfunctions of these operators are

exponentials in time, eiωkt, multiplied by scalar, vector, or spinor S3-spherical harmonics.

The frequencies ωk are quantized Matsubara frequencies, and equal 2kπ/β for bosons and
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field eigenvalue degeneracy

transverse vector A⊥ (h+ 1)2 2h (h + 2)

longitudinal vector ∇F h (h + 2) (h+ 1)2

real scalar A0 h (h + 2) (h+ 1)2

conformal scalar ΦA (h+ 1)2 (h+ 1)2

Majorana spinor ψi (h+ 1
2 )2 h (h+ 1)

Table 2: Eigenvalues (in units of 1/R2) and degeneracies of the spatial part of the small fluctuation

operator for scalar, spinor, and vector fields. The relevant operator is just the Laplacian on S3 for

all fields except conformally coupled scalars, where it includes a shift by 1/R2 due to the curvature

induced mass term. Representations of the SO(4) isometry group are labeled by h = 0, 1, 2, . . .,

except for the longitudinal vector ∇F , where h starts from 1.

(2k+1)π/β for fermions. The eigenvalues of the Laplacian on the three-sphere may be

regarded as squares of discrete spatial momenta, and scale as 1/R2, where R is the radius

of the sphere. We will generally set R = 1, and assume all momenta and energies are

measured in the units of 1/R.

The eigenvalues and associated degeneracies of the spatial part of the small fluctuation

operator, equal to the spatial Laplacian plus the mass term (for scalars), are shown in

table 2. Representations of the SO(4) isometry group are labeled by the integer h which

runs over all non-negative values; h/R may be regarded as a discrete spatial momentum.5

The degeneracy factors are the dimension of the representations at each value of h. Spatial

components of the gauge fields have been decomposed into a transverse (i.e., divergenceless)

vector field A⊥ and a gradient of a scalar, ∇F . The longitudinal vector ∇F vanishes for

constant F , and therefore h starts from 1 in this case. The spatial small fluctuation operator

for the conformally coupled scalar fields ΦA includes their curvature induced mass term, so

their eigenvalues are h(h+ 2) + 1 = (h+ 1)2. The time component of the gauge field, A0, is

a scalar with respect to the SO(4) isometry and has no mass. Note that only A0 has a zero

eigenvalue and its associated eigenfunction is constant on S3. The lack of zero modes for

divergenceless vector and spinor fields is due to the topology of S3, which cannot support

constant tensors of rank higher than zero.

The complete small fluctuation eigenvalues equal these spatial eigenvalues plus the

square of a Matsubara frequency shifted by an amount proportional to a difference of

eigenvalues of the matrix a and (for scalars and fermions) by i times a chemical potential.

Details are given in appendix A. For the scalar fields ΦA, the complete small fluctuation

eigenvalues are

(ωk + qm − qn ± iµp)2 + (h+ 1)2 , (2.24)

where {qn} are the real eigenvalues of a, ωk = 2πk/β, m,n = 1, . . . , Nc, and h = 0, 1, . . ..

Note that if the magnitude of the chemical potential µp exceeds unity (times 1/R) then,

for m = n and h = k = 0, the real part of the eigenvalue (2.24) becomes negative — which

5For the more familiar case of spherical harmonics {Y lm} on S2, the non-negative integer l labels the

SO(3) irreducible representation whose Laplacian eigenvalue is l (l+1), while the integer m labels the basis

vectors of the irreducible representation space whose dimension is 2l + 1.
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means that the Gaussian integral fails to be well-defined. This can be seen directly from the

Lagrangian (2.19), which shows that non-zero chemical potentials act like a negative mass

squared for static diagonal components of the scalar field ΦA. If the chemical potential

exceeds the 1/R curvature induced mass, then the Euclidean action becomes unbounded

below and the partition function ceases to exist. So |µp| = 1/R represents a boundary

of the phase diagram of the free theory. In the remainder of this section we assume all

chemical potentials are less than 1/R (in magnitude).

The small fluctuation operator for the static (zero frequency) component of A0 has

no temporal contribution and is just the scalar Laplacian on S3. The presence of a zero

eigenvalue of the small fluctuation operator forA0 illustrates the necessity for separating the

constant mode of A0 from the other degrees of freedom, as done in (2.23). The contributions

from the non-constant part of A0 and the longitudinal part of the spatial gauge field, ∇F ,

end up canceling the contributions from gauge-fixing ghosts (which are also scalars with

respect to SO(4)). The logarithms of the resulting functional determinants involve a sum

over all Matsubara frequencies and a sum over the discrete momentum h labeling S 3

spherical harmonics. As shown in appendix A, the Matsubara sum may be performed

explicitly and the result for the logarithm of the Gaussian integral may be cast in the form

of an effective action for the single SU(Nc) matrix U ≡ exp(iβa),

Seff(U) = −
∞∑

n=1

1

n

{
zB(xn) + (−1)n+1zF (xn)

}
[tr(Un) tr(U †n)− 1] , (2.25)

where x ≡ e−β = e−1/T and we have defined the “single particle” partition functions:

zB(x) ≡ zS(x) + zV (x) , (2.26a)

zV (x) ≡ 6x2 − 2x3

(1− x)3
, (2.26b)

zS(x) ≡ x+ x2

(1− x)3

(
xµ1 + x−µ1 + xµ2 + x−µ2 + xµ3 + x−µ3

)
, (2.26c)

zF (x) ≡ 2x3/2

(1− x)3

(
x

1
2
µ1 + x−

1
2
µ1
)(
x

1
2
µ2 + x−

1
2
µ2
)(
x

1
2
µ3 + x−

1
2
µ3
)
. (2.26d)

To obtain the grand canonical partition function, we must integrate over the remaining

single matrix a, or equivalently over the group element U ,

Z(x) =

∫
dU exp[−Seff(U)] . (2.27)

The required measure dU is Haar measure on the group SU(Nc). Even though we have de-

rived the matrix model (2.25)–(2.27) specifically for N = 4 SU(Nc) SYM theory, the model

dependence is only in the specific field content and group character. The generalization to

other gauge theories in the zero coupling limit is straightforward.

2.4 Phase structure of the free theory

The reduced theory (2.27) is a single matrix model. In the large Nc limit, this can be

solved in a manner similar to the Gross-Witten model [5]. The required analysis is a
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straightforward generalization of the zero chemical potential case discussed in refs. [7, 6].

Hence we will only sketch the procedure; interested readers should refer to refs. [7, 6] for

details.6

After rewriting the integration measure in terms of the eigenvalues of U , and intro-

ducing the eigenvalue distribution function, ρ(θ), one arrives at the following form of the

effective action for the eigenvalue distribution,7

Seff [ρ] = N2
c

∞∑

n=1

Vn ρ
2
n , (2.28)

where ρn ≡
∫ π
−π dθ ρ(θ) cos(nθ) are the Fourier series coefficients of the eigenvalue distri-

bution, and8

Vn ≡
1

n

{
1−

[
zB(xn) + (−1)n+1 zF (xn)

]}
. (2.29)

The factor of N 2
c multiplying the effective action (2.28) implies that the minimum value

of this effective action determines the leading large Nc behavior of the free energy F ≡
−β−1 lnZ, with fluctuations in the eigenvalue density only generating subleading O(N 0

c )

contributions to the free energy. As Nc →∞,

F = min
{ρ}

Seff [ρ]

β
+O(N0

c ) . (2.30)

In the effective action (2.28) each positive Vn acts as a repulsive potential for the

eigenvalue distribution, while negative Vn’s act as attractive potentials. Thus the condition

zB(xn) + (−1)n+1zF (xn) < 1 (2.31)

ensures that all Vn are positive and implies that the system is in the phase where eigenval-

ues repel and the uniform distribution ρ(θ) = 1
2π characterizes the equilibrium state. As

long as all |µp| are less than one, which is required for the existence of the grand canonical

ensemble, it is easy to see that our modified single particle partition functions (2.26) in-

crease monotonically with x. Hence, the n = 1 term in the inequality (2.31) gives the most

6The analysis in refs. [6, 7] was carried out with SU(Nc) and U(Nc) gauge groups, respectively. But the

difference between the gauge groups is negligible in the large Nc limit, and both treatments yield the same

action (2.28).
7The eigenvalue distribution ρ(θ) must be non-negative and satisfy the normalization conditionR π

−π dθ ρ(θ) = 1. The positivity condition implies constraints on the Fourier coefficients {ρn} which limit

how large any particular coefficient can grow. Because of this boundary on the space of allowable ρn, the

effective action (2.28) remains bounded below, with a well-defined minimum, even when the coefficients Vn
are not all positive. This boundary is irrelevant in the disordered phase where all Vn are positive and the

minimum of Seff lies at ρn = 0 (for n > 0). When one or more of the Vn are negative, then the minimum

lies on the boundary and its presence is essential.
8The 1/n term in Vn comes from the Haar measure dU . Expressed in terms of the eigenvalues of

the matrix U , this generates a Van der Monde determinant which may be written as a contribution of

−N2
c

R
dθ dθ′ ρ(θ) ρ(θ′) ln |2 sin( θ

2
− θ′

2
)| to Seff [ρ]. Inserting the identity ln |2 sin x

2
| = −P∞n=1

1
n

cos nx, and

assuming that ρ(θ) is an even function of θ, leads to the form N 2
c

P∞
n=1

1
n
ρ2
n.
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stringent condition. Therefore, the curve in the µ-T diagram determined by the threshold

condition

zB(x) + zF (x) = 1 (2.32)

gives the boundary of the phase in which the eigenvalue distribution is uniform and tr(U n)

has vanishing expectation value (for all n 6= 0).

In the free-field and large Nc limit, the Polyakov loop expectation value is just ρ1:

〈
1
Nc

tr P
(
eig

R β
0
dx0 A0

)〉
=
〈

1
Nc

tr eiβa
〉

=
〈

1
Nc

trU
〉

=

∫ π

−π
dθ ρ(θ) eiθ = ρ1 . (2.33)

So in the disordered phase, where the eigenvalues of U are uniformly distributed on the unit

circle, the Polyakov loop expectation vanishes. In the ordered phase, where the eigenvalue

distribution is non-uniform, the Polyakov loop will have a non-zero expectation value. The

Polyakov loop transforms non-trivially under the ZNc center of the gauge group, and its

expectation value is an order parameter for the realization of this symmetry. Thus the ZNc
symmetry is unbroken in the disordered phase, and spontaneously broken in the ordered

phase. As emphasized in the Introduction, it is this behavior of the Polyakov loop and the

associated realization of the ZNc-symmetry which motivates calling the disordered phase

“confining” and the ordered phase “deconfined”.9

Returning to equation (2.32), it is straightforward to plot where, in the µ-T plane,

solutions to this condition lie. figure 2 shows the resulting curves in four representative

cases where (µ1, µ2, µ3) = (µ, 0, 0), (µ, µ, 0), (µ, µ, µ), or (µ, µ/2, µ/2). Since there are three

independent chemical potentials, the full phase diagram is four dimensional, but the slices

shown in figure 2 illustrate the general behavior. When all chemical potentials are zero,

the phase transition line reaches the T -axis at T ≈ 0.38/R agreeing, as it should, with

ref. [7]. If |µ| denotes the maximum magnitude of the three chemical potentials then, as

discussed earlier, |µ| = 1/R is a boundary of the free field phase diagram. In the vicinity

of zero temperature, the relevant terms in eq. (2.32) are

e−β(1−µ1) + e−β(1−µ2) + e−β(1−µ3) + 2 e−
1
2
β(3−µ1−µ2−µ3) = 1 , (2.34)

where the first three exponentials are from zS(x), the last one is from zF (x), and the radius

of the sphere R is set to unity. From this expression, one sees that the maximal chemical

potential must approach 1 as T → 0. Thus, the phase transition line necessarily ends at

the boundary |µ| = 1 when the temperature falls to zero. The slope of the transition line

at zero temperature depends on how many chemical potentials approach unity. It is easy

9The expectation value of the Polyakov loop may be interpreted as exp[−β∆F ] where ∆F is the free

energy difference between equilibrium states in which one has, or has not, added a fundamental representa-

tion static test quark. In the confining phase this free energy difference is infinite and the expectation value

of the Polyakov loop vanishes, while in the deconfined phase the free energy difference is finite and the ex-

pectation value is non-zero. Hence the Polyakov loop may be viewed as a confinement/deconfinement order

parameter. But strictly speaking, the Polyakov loop expectation value is defined via cluster decomposition

from the large distance limit of the Polyakov loop two-point function. It is the two-point function which,

in infinite volume, embodies the operational definition of confinement in terms of the free energy needed to

separate a test quark and antiquark to infinity.
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Figure 2: The confinement/deconfinement phase transition line in the µ-T plane for the free

theory. Both µ and T are measured in the units of 1/R. The values of (µ1, µ2, µ3) for each line are

as follows. Solid line: (µ, 0, 0), dotted: (µ, µ/2, µ/2), dash-dotted: (µ, µ, 0), dashed: (µ, µ, µ).

to see that the limiting slope of the transition line is zero if a single chemical potential is

turned on. The limiting slope is − ln 2 when two equal chemical potentials are turned on,

and − ln 4 with three equal potentials.

2.5 Order of the phase transition

In the confining phase, the density of eigenvalues of the matrix U is constant and all (non-

trivial) Fourier coefficients of ρ(θ) vanish. The minimum value of the effective action (2.28)

vanishes, and hence the free energy in this phase is O(N 0
c ), not O(N 2

c ), as Nc → ∞. In

the deconfined phase there is a non-constant density of eigenvalues, the minimum value

of the effective action (2.28) is non-zero, and the free energy is O(N 2
c ). In other words,

limNc→∞ F/N
2
c is non-zero in the deconfined phase but vanishes identically in the confined

phase. The free energy must be continuous across any phase transition (but its derivatives

need not be), so the coefficient of the O(N 2
c ) part of the free energy must vanish as one

approaches the phase transition line from the deconfined side. If it vanishes linearly (with

temperature or chemical potential) then first derivatives of the free energy will be discon-

tinuous and the Nc =∞ phase transition is first order. If the O(N 2
c ) free energy vanishes

faster than linearly as the transition line is approached, then the Nc =∞ phase transition

is continuous.

The phase transition line is determined by the condition zB(x)+zF (x) = 1, and the left-

hand side is a monotonically increasing function of temperature. Therefore as we approach

from the deconfined side, we can analyze the local behavior near the phase transition line
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by expanding the solution to the matrix model in powers of ε2 ≡ zB(x) + zF (x)− 1, with ε

real. Such an expansion was carried out in ref. [7] for the case of zero chemical potentials,

with the result that (for ε2 > 0)

lim
Nc→∞

βF

N2
c

= −ε
2

4
+O(ε3) . (2.35)

(Additional higher order terms are also obtained in ref. [7].) The analysis is independent

of whether the single particle partition functions contain chemical potentials, so the above

result is equally valid in our case with chemical potentials.

To see if the phase transition is first order, one must merely determine how ε2 in the

result (2.35) depends on T − Tc or µ − µc. The function ε2 ≡ zB(x) + zF (x) − 1 depends

analytically on T and µ and there is no reason for its derivatives with respect to T or µ

to vanish on the line where ε2 crosses zero. It is straightforward to check numerically that

this is, in fact, the case. One finds that ε2 vanishes linearly with T − Tc and µ− µc as one

approaches a point (Tc, µc) on the phase transition line from the deconfined phase.10 Hence

the rescaled large Nc free energy, limNc→∞ F/N
2
c , has a discontinuous first derivative as

one crosses the phase transition line, showing that the large Nc confinement/deconfinement

phase transition, at zero coupling, is first order.

First order phase transitions are normally robust phenomena with regard to pertur-

bations, such as a change in the coupling in the underlying theory. So one might expect

that a first order confinement/deconfinement transition in the zero coupling limit of the

theory would imply that the transition must remain first order for some non-zero range of

couplings. In the case at hand, however, the situation is more subtle.

At a first order transition, there are multiple equilibrium states so that, as the transi-

tion is approached, the limit depends on the direction of the approach. At a typical first

order transition, the coexisting equilibrium states are separated by free energy barriers,

and it is the presence of these free energy barriers which lead to characteristic phenom-

ena associated with first order transitions such as superheating or supercooling. But in

Nc = ∞ gauge theories at zero coupling, such as the N = 4 SYM theory under discus-

sion, the free energy at phase coexistence does not have isolated minima, but rather has

a flat direction. This may be seen directly in the effective action (2.28) for the density of

eigenvalues. The coefficient V1 vanishes at the deconfinement transition, so minimizing the

effective action leaves the Fourier coefficient ρ1 completely undetermined. Approaching the

phase transition line from the confined or deconfined phases leads, at the transition, to the

equilibrium states with minimal or maximal values of ρ1, respectively. But these states are

not separated by any free energy barrier.11

10For example, with only one chemical potential turned on, (Tc, µc) = (0.35, 0.53) (measured in the units

of 1/R) is a point on the phase transition line and βF
N2
c
∼ −2.4 (T−Tc)−0.31 (µ−µc). When all three chemical

potentials are equal, (Tc, µc) = (0.35, 0.32) lies on the transition line and βF
N2
c
∼ −2.5 (T −Tc)−0.48 (µ−µc).

11Because of this, some might quarrel with calling this a first order transition, even through the free

energy shows a kink (in temperature or chemical potential) as one crosses the transition line. Following the

analysis of ref. [7], one may show that if the transition line is approached from the deconfined phase, then

the Polyakov loop expectation value ρ1 has a limiting value of 1/2, independent of the chemical potential.
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The lack of a free energy barrier separating the coexisting equilibrium states (in the

zero coupling theory) means that a small perturbation, such as turning on an infinitesimal

non-zero coupling, can have a large effect. A non-zero coupling can lift the flat direction

and produce either a first order transition (with a barrier separating coexisting states)

or a second order transition, depending on the sign of the (ρ1)4 term which is induced

in the effective action for the density of eigenvalues. As discussed in greater detail in

ref. [7], a three-loop calculation is needed to determine this sign. The required three-

loop calculation has not yet been done (even for zero chemical potential), so the order of

the confinement/deconfinement transition in N = 4 super Yang-Mills theory at small but

non-zero coupling is currently unknown.12

2.6 Canonical vs. grand canonical

To understand how our results compare with the picture of ref. [22], one must convert from

the grand canonical to the canonical ensemble (or vice-versa). Starting from the grand

canonical free energy F (β, µp) ≡ −β−1 lnZ(β, µp), the R-charges are given by Qp = − ∂F
∂µp

,

and the thermodynamic potential of the canonical ensemble is A(β,Qp) ≡ F +
∑

p µpQp
(with the chemical potentials now viewed as functions of the charges). Given the canonical

ensemble potential as function of temperature and charge, the chemical potentials are given

by µp = ∂A
∂Qp

.

Within the deconfined phase, the free energy and the R-charges are both of order N 2
c ,

so the rescaled charges

qp ≡ lim
Nc→∞

Qp
N2
c

(2.36)

are appropriate observables in the large Nc limit. ref. [22] considered thermodynamics with

a fixed non-zero value for the total rescaled charge q ≡∑p qp.

Consider, for simplicity, the case of equal chemical potentials. In the interior of the

deconfined phase, there is a one-to-one mapping between the chemical potential µ and

the rescaled charge q. But within the confined phase, the R-charges (as well as the free

energy) are O(1), so the rescaled charge q vanishes identically. At any fixed tempera-

ture T below the µ = 0 confinement transition temperature, if one increases the chemical

potential starting from zero then q remains identically zero until one reaches the confine-

ment/deconfinement transition at µ = µc(T ). Since the transition (in the free theory)

is first order, the rescaled charge q jumps discontinuously across the transition to some

non-zero value qc(T ), which is the minimal value of q (at the given temperature) within

the deconfined phase. As the chemical potential is further increased, the charge continues

to grow, eventually diverging at the edge of the phase diagram (i.e., as µ→ 1).

From this description, it might seem that it is impossible to obtain an equilibrium state

with 0 < q < qc(T ) — but this is wrong. The essential point is that first order transitions

always involve phase coexistence. The q = qc(T ) and q = 0 statistical ensembles produced

by taking µ→ µc(T ) from above and below, respectively, in the grand canonical ensemble

12For pure Yang-Mills theory on a sphere, the corresponding three-loop calculation has been performed [8],

and in this case the large Nc confinement transition remains first order at small but non-zero coupling.
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Confined phase

q

Deconfined phase

Phase coexistence

Figure 3: Schematic phase diagram for the free theory in the q-T plane. Within the phase

coexistence region, the chemical potential is independent of the charge q, and equal to its value

µc(T ) on the confinement/deconfinement transition line. Inside the deconfined phase, the chemical

potential (at fixed T ) increases with increasing q. Only the T < Tc segment of the q = 0 axis

corresponds to the pure deconfined phase. The maximal charge qmax
c = 1/4, and the maximum

transition temperature Tmax
c ≈ 0.38/R.

are extremal equilibrium states. But any statistical mixture of these two states is also a

valid equilibrium state in the Nc →∞ limit.

Therefore, the canonical description of the phase diagram shown in figure 2 will have

a deconfined phase for q > qc(T ) in which the susceptibility ∂µ
∂q = 1

N2
c

∂2A
∂q2 is positive (so

the chemical potential increases monotonically with q), together with a phase coexistence

region for 0 < q < qc(T ) in which the the chemical potential µ = limNc→∞
1
N2
c

∂A
∂q is

independent of q. Within the phase coexistence region the (rescaled, large Nc limit of the)

thermodynamic potential, limNc→∞A/N
2
c , is simply equal to µ(T ) q. Only at q = 0 will

one have the pure confined phase. This is illustrated in figure 3

Although the authors of ref. [22] did not explicitly evalute the chemical potential

produced by their thermpdynamic potential, or notice its independence on q for their “small

q” extremum, the results of ref. [22] are completely consistent with the above description

of phase coexistence in the q-T phase diagram.13

13Within the truncation used in ref. [22], the thermodynamic potential in the confined phase is given

by βA(β, q) = minρ
ˆ
N2
c ρ

2 − Seff(ρ)
˜
, where Seff(ρ) is their eq. (3.19). Evaluating this gives a result

proportional to q, and hence a chemical potential independent of q. These authors also constructed a

phenomenological model based on a deformation of the effective action which can mimic the effect of

turning on a weak gauge coupling. For this generalization, assuming the transition remains first order,

one again finds that A is linear and the chemical potential is independent of q in the region of the phase

diagram where the thermodynamic potential is minimized by the stable small q solution (denoted solution

I in [22]). Hence this region again corresponds to phase coexistence, and the phase diagram resulting from

this model resembles figure 3 above.
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3. Weak coupling, high temperature effective theory

We now consider the theory in the high temperature regime, T À 1/R, with a small non-

zero coupling. The relevant expansion parameter will be 1/(TR)2, so the high temperature

regime may also be viewed as the regime of large spatial radius at a fixed temperature.

Consequently, for observables which are primarily sensitive to the scale T , the curvature

of the S3 will produce only small corrections to flat space results.

Let λ ≡ g2Nc denote the usual ’t Hooft coupling, which is held fixed as Nc → ∞.

Interesting phenomena in the phase diagram will be found to occur when 1/(TR)2 and

µ2/T 2 are both of order λ, so we will focus on this region of parameter space.

At non-zero temperature, one may always decompose fields into Fourier series running

over all Matsubara frequencies, and thereby view every four-dimensional field as an infinite

tower of three dimensional fields. At high temperature, where the 1/T circumference of

the periodic time circle is small compared to all other scales, the non-zero Matsubara

frequency modes behave (with respect to physics on length scales large compared to 1/T )

like fields describing very heavy excitations with O(T ) mass. As T → ∞, the non-static

heavy modes decouple [27] and one may integrate them out leaving only the light zero

frequency modes. In this way, one obtains a three dimensional effective theory of the static

modes [28]. Convenient techniques for systematically constructing this effective theory,

using dimensional continuation to regulate both long and short distance behavior, were

described by Braaten and Nieto [29, 30].

There are three scales which are relevant for equilibrium thermodynamics in weakly

coupled high temperature non-Abelian gauge theories at zero chemical potential: the tem-

perature T, the “electric mass” (or inverse Debye screening length) which is O(
√
λT ),

and the “magnetic mass” (or inverse correlation length of the static gauge field) which is

O(λT ). One may construct a dimensionally reduced “electric” effective theory, valid on

length scales large compared to 1/T , by integrating out non-static fluctuations. One may

then construct a further reduced “magnetic” effective theory, valid on length scales large

compared to (
√
λT )−1, by also integrating out static fluctuations on the Debye screening

scale. For QCD, these two effective theories are commonly referred to as EQCD3 and

MQCD3, respectively [30].

For our case of N = 4 super-Yang-Mills theory with non-zero chemical potentials, it is

the “electric” effective theory which will be of interest. This effective theory, which we will

call “ESYM3”, will contain a three dimensional gauge field A, the static component of A0,

which will appear as an adjoint scalar field, and the static components of the original scalars

ΦA. The fermions, having no zero-frequency components due to their antiperiodicity, will

be completely integrated out. Operationally, one builds the effective theory by considering

all local operators which may be constructed from these fields and are consistent with

the symmetries of the theory. Up to any given order in perturbation theory, only a finite

number of operators with sufficiently low dimensions are needed. The required coefficients

are determined by matching the results for a minimal set of observables which may be

evaluated in both the effective and underlying theories [29, 30].

The operators in ESYM3 include the identity operator, the usual gauge invariant
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derivative terms, quadratic mass terms for scalar fields, and scalar interaction terms. It is

convenient to use rescaled fields in the effective theory,

Ai ≡
√
Z1T Ãi , A0 ≡

√
Z2T Ã0 , ΦA ≡

√
Z3T Φ̃A , (3.1)

with Z1, Z2, and Z3 dimensionless wavefunction renormalization factors, and Ãµ and Φ̃A

now having canonical dimension 1/2. The wavefunction renormalization factors may be

chosen so that the Lagrangian density of the effective theory has the form

LESYM3 = f + tr
[

1
2(F̃ij)

2 + (DiÃ0)2 +M2
D Ã

2
0 + (DiΦ̃A)2 +m2

A Φ̃2
A

]
+ V (Ã0, Φ̃A) , (3.2)

where Di ≡ ∂i + ig3[Ãi, ·] and F̃ij = [Di, Dj ], with g3 ≡ g
√
T the dimensionful gauge

coupling appropriate for a three-dimensional theory.

The coefficient of the identity operator, f , is the 3-d effective theory version of a

cosmological constant, and represents the contribution to the free energy density from

modes which have been integrated out. Because we are working at high temperature (or

large volume) and only integrating out heavy modes with short O(1/T ) correlation lengths,

the computation of the free energy density due to heavy modes may be performed entirely

in flat space, treating the curvature and chemical potential induced scalar mass terms as

small perturbations. Corrections to this approximation will vanish exponentially fast in

TR (or faster than any power of λ, since we are assuming that TR is of order 1/
√
λ).

Details of the calculation are described in appendix B.1. The result, through order λ, is

f = −N
2
c T

3

12

{
2π2 − 3λ− 3

T 2R2
+

3∑

p=1

2µ2
p

T 2
+

4∑

i=1

µ̃2
i

T 2
+O(λ2)

}
. (3.3)

The mass parameters m2
A of the scalar fields Φ̃A receive tree-level contributions from

the curvature coupling and the chemical potentials, plus O(
√
λT ) one-loop thermal cor-

rections, so that

m2
A = R−2 − µ2

A + δm2(T ) , (3.4)

where we introduce (for later convenience)

µA ≡





µ1 , A = 1 or 2;

µ2 , A = 3 or 4;

µ3 , A = 5 or 6.

(3.5)

Because we will be interested in the regime where the tree-level contributions nearly cancel,

including the thermal mass correction δm2(T ) is essential. This contribution, as well as the

one-loop scalar wavefunction renormalization (which will also be needed) may be obtained

by matching the two-point scalar correlator in the original theory at zero frequency and

low spatial momentum with the corresponding correlator in the effective theory. The

computation is shown in appendix B.2. The result for the thermal mass (also derived in

refs. [31 – 33]) is

δm2(T ) = T 2
[
λ+O(λ2)

]
. (3.6)
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One-loop fluctuations on the scale T also produce an O(
√
λT ) mass for Ã0. The resulting

Debye mass parameter is [31]

M2
D = T 2

[
2λ+O(λ2)

]
. (3.7)

The interaction potential V (Ã0, Φ̃A) contains both tree-level and fluctuation induced

thermal contributions,

V (Ã0, Φ̃A) = Vtree(Ã0, Φ̃A) + δV (Ã0, Φ̃A) . (3.8)

The tree-level part equals the scalar interaction terms of the original four-dimensional

action, re-expressed in terms of the rescaled fields (3.1) (with the wavefunction renormal-

ization factors equal to one at lowest order),

Vtree(Ã0, Φ̃A) = tr
{

2g3 µp ([Ã0, X̃p] Ỹp) + g2
3 (i[Ã0, Φ̃A])2 + 1

2g
2
3 (i[Φ̃A, Φ̃B ])2

}
. (3.9)

It is straightforward to obtain one-loop contributions to δV that are quartic in ΦA. The

coefficient of the quartic term can be computed by evaluating the one-loop heavy-mode

contribution to the four-point correlator of the scalar fields with vanishing external mo-

menta. Once again, because we are interested in effects due to heavy modes with correlation

lengths small compared to R, these contributions may be evaluated in flat space, ignoring

both curvature and chemical potential corrections. The required calculation is performed

in appendix B.3, with the result

δVquartic(Φ̃A) =
ln 2

2π2

g4
3

T
tr(Φ̃adj

B Φ̃adj
C Φ̃adj

B Φ̃adj
C ) , (3.10)

where the trace is in the adjoint representation, with (Φ̃adj
A )ac ≡ iΦ̃b

Af
abc. Note that no

terms cubic in Φ̃A can be generated, since they would not respect the U(1)3 subgroup of

the SU(4) R-symmetry, which is preserved even in the presence of chemical potentials.

One may, in principle, continue in a similar manner and obtain the coefficients of

arbitrarily higher dimensional operators in the effective action. However, in the special case

where the scalar fields take values in flat directions (which minimize the tree potential), one

may employ a more elegant background field method. This method not only confirms the

coefficients of the results (3.6) and (3.10), it also yields all higher order terms, in powers of

Φ, in the one-loop contribution to δV (ΦA). This is discussed in appendix C and the result

is

δVflat(Φ̃A) = 1
2π

2 T 3 tr

[
(ln 2)

( g2
3

π2T 2

∑

A

Φ̃adj
A Φ̃adj

A

)2

+

∞∑

l=3

8(1− 4−l+2)
(2l−5)!!

(2l)!!
ζ(2l−3)

(
− g2

3

π2T 2

∑

A

Φ̃adj
A Φ̃adj

A

)l ]
. (3.11)

These adjoint representation traces may be written more explicitly in terms of the eigen-

values {λ̃mA } of Φ̃A (viewed as an Nc × Nc matrix). It will prove convenient to introduce

dimensionless rescaled eigenvalues,

ρmA ≡
g3

πT
λ̃mA , (3.12)
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in terms of which

tr

[( g2
3

π2T 2

∑

A

Φ̃adj
A Φ̃adj

A

)l ]
=
∑

m,n

∑

A

(ρmA − ρnA)2l . (3.13)

Note that when the rescaled eigenvalues {ρmA } (and their differences) are parametrically of

order one, then all terms in the series (3.11) are comparable in size. The potential (3.11)

will play an essential role in the next section, where its behavior will be examined in more

detail.

4. High temperature thermodynamics

4.1 Deconfined plasma phase

The effective scalar masses m2
A [given by eqs. (3.4) and (3.6)] are positive as long as the

chemical potentials are sufficiently small,

µ2
A < R−2 + λT 2 . (4.1)

Assuming this is the case, the trivial configuration of vanishing scalar fields,

Φ̃A = 0 , Ã0 = 0 , (4.2)

is a local minimum of the effective potential. The conditions under which this is the

global minimum will be examined in the next subsection. Because of the non-zero Debye

mass M2
D [given by eq. (3.7)], the static mode Ã0 has perturbatively small fluctuations

in the weak coupling, high temperature regime. Hence, the Polyakov loop expectation

value 〈trU(~x)〉 = 〈tr eiβgA0(~x)〉 is non-zero.14 So the trivial configuration (4.2) describes a

deconfined plasma phase in which the center symmetry is spontaneously broken while the

U(1)3 R-symmetry (left invariant by the chemical potentials) is unbroken.

The free energy F = −T lnZESYM3 , where ZESYM3 is the partition function of the

three-dimensional effective theory (3.2). In the deconfined plasma phase the order λ0 and

λ1 contributions to βF arise solely from the heavy modes which were integrated out to

produce the effective theory. Hence, these contributions are completely contained in the

coefficient of the unit operator, f , given in eq. (3.3). The next contribution is of order

λ3/2 (not λ2), and comes from static fluctuations of the scalar fields Φ̃A and Ã0. In the

full theory, evaluation of the order λ3/2 contribution requires an infinite resummation of

ring diagrams. But this becomes an easy one-loop calculation using the high temperature

effective theory.

Because the spatial gauge fields Ãi are massless, their one-loop contribution vanishes

(using dimensional continuation). The effective scalar fields Ã0 and Φ̃A each make a one-

loop contribution to the free energy density of the form

1
2N

2
c T

∫
d3p

(2π)3
ln(p2 +m2) = −N2

c T
m3

12π
, (4.3)

14Explicitly, 〈trU〉 = Nc
ˆ
1 +

`
1− 1

N2
c

´
λ3/2

8
√

2π
+O(λ2)

˜
in the deconfined plasma phase. This follows from

the pure Yang-Mills result [34] after accounting for the differing Debye mass of N = 4 SYM.
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where the integral is evaluated using dimensional continuation, and m is the appropriate

mass parameter for the field. So the entire O(λ3/2) contribution to the free energy density

is

−N
2
c T

12π

(
M3
D +

6∑

A=1

m3
A

)
. (4.4)

Inserting the explicit expressions (3.4)–(3.7) for these masses, and adding (T times) the

coefficient f of the unit operator (3.3), we obtain the free energy in the deconfined plasma

phase, through order λ3/2,

Fplasma = −N
2
c

12
T 4 V

{
2π2 − 3λ− 3

T 2R2
+

3∑

p=1

2µ2
p

T 2
+

4∑

i=1

µ̃2
i

T 2

+
(2λ)3/2

π
+

2

π

3∑

p=1

(
λ+

1

T 2R2
− µ2

p

T 2

)3/2

+O(λ2)

}
, (4.5a)

with V ≡ 2π2R3 the spatial volume. Note that this expression is only valid (and real) when

the chemical potentials satisfy the inequality (4.1).

4.2 Is there a Higgs phase?

Now consider the situation when the maximal chemical potential exceeds λT 2+R−2, so that

some of the effective scalar masses m2
A = λT 2 +R−2−µ2

A become negative. This makes the

quadratic terms in the ESYM3 scalar potential unstable, so the minimum of the effective

theory scalar potential can no longer lie at the origin. However, one may verify that the

sum of the tree (3.9) and one-loop (3.10) quartic contributions to the scalar potential is

positive definite for all non-zero Φ̃A, showing that the quartic thermal corrections to the

effective potential lift the flat directions which are present in the tree-level potential.

This suggests that thermal corrections to the scalar interactions in the effective the-

ory may stabilize the theory when chemical potentials are large, generating a non-trivial

minimum of the effective scalar potential. Such a non-trivial minimum would correspond

to a Higgs phase with spontaneously broken R-symmetry.

Assume (for the moment) that terms in the scalar potential involving higher than

quartic powers of the field are unimportant. One can explicitly minimize the quadratic plus

quartic contributions to the ESYM3 scalar potential. At the minimum one is balancing

an unstable tree-level quadratic term against a one-loop quartic term, so the rescaled

eigenvalues (3.12) of the scalar fields Φ̃A are of order

(ρmA )2 ∼ |m
2
A|

λT 2
. (4.6)

The corresponding value of the (truncated) potential, at its minimum, scales as

−N2
c T

3

[
max
A

(
−m

2
A

λT 2

)]2

. (4.7)
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However, minimizing the truncated scalar potential and adding its value to the coefficient

of the identity operator (3.3) does not produce a valid approximation for the free energy

and, as we will see, this putative Higgs phase simply does not exist.

There are two problems with the above scenario suggesting the presence of a Higgs

phase. First, we neglected higher than quartic terms in the ESYM3 potential (3.11). This

is only acceptable if (ρmA )2 ¿ 1 which, given the above estimate, requires |m2
A| ¿ λT 2.

The curvature and chemical potential contributions to m2
A are, by previous assumption,

individually of order λT 2. So neglecting terms higher than quartic in the potential requires

that m2
A be parametrically smaller than its individual pieces. In other words, one must

restrict attention to a “fine-tuned” region in the phase diagram sufficiently close to the

surface where an effective scalar mass first turns negative.

Second, and more importantly, the above scenario was based on a classical analysis of

the action (3.2) of the effective theory — so it neglected the effects of fluctuations in the

static ESYM3 fields. To see if this matters, let

Φ̃A = 〈Φ̃A〉+ δΦ̃A , (4.8)

with the mean value 〈Φ̃A〉 lying along a flat direction of the tree-level potential. That

implies that the mean values are simultaneously diagonal, 〈(Φ̃A)mn〉 = (πT/g3) ρmA δmn (up

to an irrelevant gauge transformation). Inserting the decomposition (4.8) into the tree-level

potential (3.9) leads to non-zero mass corrections for the off-diagonal components of the

scalar field and Ã0 fluctuations,15

δVtree(Φ̃A) =
∑

m,n

M2
mn

{∣∣(Ã0)mn
∣∣2 +

∑

B

∣∣(δΦ̃B)mn
∣∣2
}

+O(δΦ̃3) +O(δΦ̃Ã2
0) , (4.9)

with

M2
mn ≡ π2T 2

∑

A

(ρmA − ρnA)2 . (4.10)

And inserting (4.8) into the scalar kinetic term produces mass terms for the off-diagonal

components of the static gauge field, tr(DiΦ̃A)2 =
∑

m,n M
2
mn

∣∣(Ãi)mn
∣∣2 + · · · .

If the (rescaled) diagonal components {ρmA } are O(1), then the mass terms (4.10) for

off-diagonal fields induced by the mean values of the diagonal components will be of order

T 2, or large compared to the O(λT 2) thermal contributions due to the non-zero frequency

modes, as well as the curvature and chemical potential induced mass terms [which we have

assumed to also be O(λT 2)]. It will be sufficient to focus on this regime; if a Higgs phase

does exist, then the typical size of ρmA will need to be of this order. Consequently, if the

scalar fields Φ̃A have non-trivial mean values lying along flat directions of the tree-level

potential, then off-diagonal components of the static fields will act like heavy degrees of

freedom (just like the non-static Matsubara modes) and need to be integrated out before

considering the dynamics of the remaining “light” diagonal modes.

15We have omitted off-diagonal terms contained in δVtree(Φ̃A) which mix δΦ̃A with Ã0, or mix δΦ̃A with

δΦ̃B (for A 6= B). These terms may be canceled by using the three dimensional version of the gauge fixing

term (C.2), with gauge fixing parameter ξ = 1.
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Doing so is straightforward; the basic ingredient is just the three dimensional loop

integral (4.3). The result is a “Higgs-branch” three-dimensional effective theory which we

will term “HSYM3” and whose Lagrange density has the form

LHSYM3 = tr
[

1
2 (F̃ij)

2 + (DiÃ0)2 +M2
D Ã

2
0 + (DiΦ̃A)2

]
+ V (Φ̃A) , (4.11)

where the fields are now diagonal,16 with gauge group [U(1)]Nc−1. The scalar potential

V (Φ̃A) for the remaining diagonal components is

V (Φ̃A) = f + tr(m2
A Φ̃2

A) + δVflat(Φ̃A) + δVoff−diag(Φ̃A) , (4.12)

where f is the additive constant (3.3) due to the non-zero frequency modes, δVflat(Φ̃A) is

the one-loop potential (3.11) induced by non-zero frequency fluctuations, and17

δVoff−diag(Φ̃A) = −2
3π

2 T 3 tr

[( g2
3

π2T 2

∑

A

Φ̃adj
A Φ̃adj

A

)3/2
]
. (4.13)

Writing this explicitly in terms of the rescaled eigenvalues {ρmA } of Φ̃A, the potential is

V (ρmA ) = 1
2π

2 T 3
∑

m,n

[
h(ρmn) +

∑

A

δm̂2
A (ρmA−ρnA)2

]
, (4.14)

where we have defined an rms measure of eigenvalue differences,

ρmn ≡
[∑

A

(
ρmA − ρnA

)2]1/2
, (4.15)

introduced the rescaled mass shift

δm̂2
A ≡

m2
A

λT 2
− 1 =

R−2 − µ2
A

λT 2
, (4.16)

and defined the one-dimensional function

h(v) = − 1
3 + v2 − 4

3 v
3 + (ln 2) v4 +

∞∑

l=3

8 (1 − 4−l+2)
(2l−5)!!

(2l)!!
ζ(2l−3) (−v2)l . (4.17)

The additive constant − 1
3 comes from f . We have dropped subleading O(λT 3) contribu-

tions to f , as these are parametrically smaller than the O(T 3) terms retained in V .

Inserting the defining series for the zeta function and interchanging summations allows

one to re-express h(v) in an alternative form which is more convenient for examining its

global behavior, namely

h(v) = − 1
3 + v2 − 4

3 v
3 + 8

3

∞∑

j=1

(−1)j−1
[
(j2+v2)3/2 − j3 − 3

2v
2 j
]
. (4.18)

16For configurations in which the scalar field Φ̃A has degenerate eigenvalues (which may naturally be

grouped together into blocks of equal eigenvalues), it is the block off-diagonal components of the static

fields which acquire mass, and the block-diagonal components which remain light. For these exceptional

configurations, the residual gauge group is larger than [U(1)]Nc−1.
17This is just the result (4.3), adapted to the differing masses (4.10), and multiplied by 8 to account for

the 8N2
c (real) bosonic degrees of freedom — 6 from the scalars and two from the transverse components

of the gauge field. (The gauge-fixing ghosts cancel the Ã0 and longitudinal contributions.)
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Figure 4: Graph of the function h(v), defined in eq. (4.18).

The function h(v) is graphed in figure 4. For large arguments, h(v) approaches zero expo-

nentially rapidly,18

h(v) ∼ − 4

π2
(2v)3/2 e−πv . (4.19)

The approach to zero as v →∞ may be understood as a consequence of supersymmetry. In

the potential (4.14), the argument ρmn of the function h is the ratio of the mass scale Mmn

for the off-diagonal fields to (π times) the temperature. A large ratio is equivalent to sending

T → 0 while holding this mass scale fixed. (Since we are assuming 1/(TR)2 ∼ µ2/T 2 ∼ λ,

this also implies sending R → ∞ and µ → 0.) At zero temperature, supersymmetry

requires that all loop contributions to the effective potential cancel. So the cancellation of

contributions to the one-loop potential as eigenvalue differences become large follows from

the cancellation of one-loop contributions as T → 0.

As indicated in eq. (4.14), the complete potential V (ρmA ) is a sum of values of h(v) plus

the sum of squares of the eigenvalue differences weighted by the mass shift δm̂2
A. Plots

of the resulting potential, for a simple eigenvalue distribution and several choices of mass

shifts, are shown in figure 5.19 Since the function h(v) is bounded (for positive real v),

it is evident that the potential V (ρmA ) will be unbounded below if any mass shift δm̂2
A is

negative. Since δm̂2
A ∝ R−2 − µ2

A, this means that no truly stable equilibrium phase can

exist if any chemical potential exceeds 1/R. Moreover, the potential V (ρmA ) has no local

minimum for any non-zero set of eigenvalues {ρmA }. Hence there is no Higgs phase (not

even a metastable Higgs phase) in this weakly coupled, high temperature theory.

18To derive this asymptotic form, it is convenient to rewrite the infinite sum in (4.18) as a contour integral,

leading to h(z) = − 1
3

+ v2 + 4
3

limε→0

R
C
dz
2i

csc(πz)[(z2 + v2)3/2− (z2 + ε2)3/2− 3
2
v2(z2 + ε2)1/2], where the

contour C encircles the real axis counterclockwise and the branch cuts of the integrand run outward from

the branch points to ±i∞. Deforming the contour so that it wraps around the branch cuts, producing an

integral of the discontinuity across the cuts, leads to the stated asymptotic form.
19figure 5 plots the potential when the eigenvalues of one scalar field are non-zero and all have the same

magnitude, with half of them positive and half negative (so that the field is traceless).
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Figure 5: Plots of the scalar potential V , divided by the overall factor c ≡ 1
2π

2N2
c T

3, for the

eigenvalue configuration ρmA = v δ1
A (−1)m, as a function of v. The four plots correspond to δm̂A

2 =

0.2, 0.0, −0.05 and −1, respectively. Note that half of the eigenvalues differences ρmn are zero

in this configuration, and each vanishing difference contributes h(0) = − 1
3 to V /( 1

2π
2T 3). This

accounts for the non-zero asymptotic value in case (b). If δm̂2
A is positive (or zero), then the

potential is monotonically increasing with a unique minimum at the origin. If −1 < δm̂2
A < 0, then

the potential is unbounded below, with a local minimum at the origin. If δm̂2
A < −1, then the

potential is monotonically decreasing with a maximum at the origin.

4.3 High density metastability

When the largest chemical potential lies in the interval

R−2 < µ2 < λT 2 +R−2 , (4.20)

the deconfined plasma phase (corresponding to the origin of the field space) is locally stable,

but is not the global minimum of the free energy — as there is no global minimum. For

this range of chemical potential and finite Nc, as we will see, the deconfined plasma is

metastable with a lifetime which grows exponentially as Nc →∞. The onset of instability,

at a (maximal) chemical potential of 1/R, is independent of λ and thus exactly where

the free theory becomes ill-defined. This may be understood as a consequence of the

existence of towers of BPS operators with vanishing anomalous dimensions (independent

of λ) which map to towers of BPS states on S3 with energies precisely equal to their R-

charge. Consequently, the Boltzmann sum representation of the partition function ceases

to converge if any chemical potential exceeds 1/R. However, this does not prevent the

existence of an arbitrarily long-lived metastable phase above this threshold.
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To estimate the decay rate when µ > 1/R, consider the behavior of the effective

potential V (Φ̃A) for configurations of the form

ρmA = v δA,1 (δm,1 − 1/Nc) , (4.21)

for some dimensionless real number v. All but one of the eigenvalues remain near the origin

in this configuration as the single eigenvalue ρ1
1 ≡ v (1− 1

Nc
) is varied. (This configuration

satisfies the SU(Nc) tracelessness constraint,
∑

m ρ
m
A = 0.) Assume that µ1 is the largest

chemical potential. For this class of configurations, the potential V (Φ̃A) becomes

V (v) = − 1
6π

2T 3N2
c + π2T 3Nc [h(v) + 1

3 + δm̂2
1 v

2] +O(N0
c ) . (4.22)

The interval (4.20) corresponds to δm̂2
1 ≡ (R−2 − µ2

1)/(λT 2) lying between 0 and −1. A

plot of V (v) resembles case (c) of figure 5, with a potential barrier separating the region

near v = 0 from the bottomless region at large values of v. However, for the eigenvalue

configuration (4.21) the height of this potential barrier grows only linearly with Nc,

∆V ≡ max
v

V (v) − V (0) = O(Nc T
3) . (4.23)

As seen from eq. (4.14), this potential difference receives contributions from every pair of

unequal eigenvalues of Φ̃1 and, for this configuration, only 2(Nc−1) terms involving the

difference between ρ1
1 and the other Nc−1 eigenvalues of Φ̃1 contribute.

The deconfined plasma phase corresponding to v = 0 can decay via a thermal fluc-

tuation in which a single eigenvalue makes a large excursion from the origin to top of

the barrier, uniformly in space. The probability for such a fluctuation has a Boltzmann

suppression factor of

e−V∆V = e−O(Nc (TR)3) , (4.24)

where V = 2π2R3 is the spatial volume. (The usual factor of β = 1/T appearing in

a Boltzmann factor was absorbed in our definition of the scalar potential of the three

dimensional effective theory.)

Alternatively, a thermal fluctuation could nucleate a critical bubble in which a single

eigenvalue makes a large excursion to values across the barrier with lower free energy

density, over a sufficiently large spatial region so that bubble subsequently grows. The

process is characterized by a Euclidean bounce solution [35, 36]. The required size of the

critical bubble scales as (
√
λT )−1. The action (in the effective theory) for such a solution

is O(Nc/λ
3/2), so the rate for this process will have a Boltzmann suppression factor of20

e−Sbounce = e−O(Nc λ−3/2) . (4.25)

When 1/(TR) = O(
√
λ), which we have assumed, then both processes will have rates

which are exponentially suppressed by an amount which scales as Nc/λ
3/2. Which process

20To see this, it is convenient to rescale spatial coordinates ~x→ ~y/
√
λT , which corresponds to measuring

distance in units of the Debye length. Then, for a single eigenvalue excursion, the scalar part of the

action (4.11) reduces to a dimensionless action of the form
R
d3y [ 1

2
(∇ρ)2 + h(ρ)] times an overall factor of

Nc/λ
3/2. Therefore, the action of the bounce solution must scale in the same way.
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Plasma

Deconfined
Stable

Plasma
Confined

µ Unstable

Weak Coupling

AdS

Strong Coupliing (Gravity)

Unknown

Black Hole

µ

TT0T

Unknown

1/R1/R

Figure 6: The phase structure of the weakly coupled gauge theory on the left, and of gravitational

solutions to 5-d supergravity, believed to correspond to the strongly coupled gauge theory, on the

right. For both figures, µ is the largest of the three chemical potentials. In the weak coupling

diagram, the location of the phase boundary forming the upper limit of the metastable plasma

phase has not been evaluated at low temperature; this portion of the boundary is indicated by the

dashed line. In the strong coupling diagram, T0 is the temperature at which the black hole radius

reaches to zero. Its value depends on the pattern of chemical potentials and equals (πR)−1 for a

single non-zero charge, while T0 = 0 for three equal charges.

dominates depends on the pure numerical coefficients in the exponents of (4.24) and (4.25)

[which we have not evaluated] together with the value of
√
λTR.21 Consequently, despite

the fact that no true equilibrium state exists when µ > 1/R, as long as the maximal chem-

ical potential is within the interval (4.20), the deconfined plasma phase will be metastable

with a lifetime which diverges exponentially as Nc →∞.

The region of deconfined plasma metastability terminates when the largest chemical

potential reaches a maximal value,

µmax(T ) =
√
λT 2 +R−2 × [1 +O(λ)] , (4.26)

at which point the effective thermal mass of one or more of the scalar fields becomes

negative. This is analogous to “spinodal decomposition,” which determines the limit of

supercooling or superheating at a typical first order phase transition. However, for weakly

coupled N = 4 SYM, no new equilibrium state exists for µ > µmax.

5. Summary and comparison with dual gravitational analysis

The resulting phase diagram for weakly coupledN = 4 supersymmetric Yang-Mills theory is

sketched on the left side of figure 6. A confinement/deconfinement transition line separates

21Note that decay rates via fluctuations involving large excursions of multiple eigenvalues are suppressed

by additional exponentially small factors, relative to the rates of the single eigenvalue processes discussed

above. As an extreme case, if all eigenvalues make equally large excursions, as in the configurations shown

in figure 5c, then the decay rate will be exponentially suppressed by a factor scaling as N 2
c /λ

3/2.
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a confining phase at lower temperature or chemical potential from a deconfined plasma

phase at higher temperature or chemical potential. The location of this line is known in

the λ→ 0 limit but, for the reasons discussed in section 2, the order of this phase transition

(at small but non-zero coupling) is not currently known. If the maximal chemical potential

exceeds 1/R, then no truly stable equilibrium state exists. But, at least for sufficiently high

temperatures (T À 1/R), the deconfined plasma remains metastable beyond µ = 1/R,

with a lifetime which grows exponentially as Nc →∞. This metastable region terminates

at a spinodal decomposition phase boundary when the largest chemical potential reaches

a limiting value µmax(T ). The µ = µmax(T ) boundary line asymptotically rises linearly

with temperature with slope
√
λ, regardless of how many chemical potentials reach µc(T )

simultaneously.

When T . 1/R, the location of the spinodal decomposition phase boundary is not

currently known (at non-zero but weak coupling). Neither are order λ corrections to the

location of the confinement/deconfinement transition line. It is possible that the phase

boundary remains separated from the confinement/deconfinement transition line for all

non-zero temperatures, with both lines intersecting at T = 0 and µ = 1/R. This possi-

bility is sketched in figure 6. But, for non-zero couplings, the confinement/deconfinement

transition line may instead intersect the phase boundary line at a non-zero temperature.

In other words, the deconfined plasma region of the phase diagram could pinch off before

reaching zero temperature. In this case, for sufficiently low temperature, the confined phase

might extend all the way to the boundary of the phase diagram at µ = µmax(T ), with no

intervening phase transitions. Which possibility occurs may well depend on the particu-

lar pattern of chemical potentials (for example, whether two or more chemical potentials

coincide).

The right side of figure 6 shows a sketch of the behavior of gravitational solutions of

five dimensional N = 2 gauged supergravity, which are believed to be related to the strong

coupling limit of N = 4 supersymmetric Yang-Mills [17, 18]. The similarities are obvious

(in contrast to the previous situation depicted in figure 1). A qualitatively similar confine-

ment/deconfinement (or Hawking-Page) transition line is present on both sides. For the

black hole, this transition is known to be first order. The black hole instability line, where

small perturbations become thermodynamically unstable, appears completely analogous to

the spinodal decomposition phase boundary of the weak coupling diagram. The black hole

instability line rises linearly for temperatures large compared to the inverse of the AdS5

curvature radius, 1/R, but the slope depends on the pattern of chemical potentials (unlike

the case at weak-coupling). With only one non-zero potential, for example, the asymptotic

slope is π/
√

2, while for three equal chemical potentials the slope is 2π.

As noted in footnote 3 of the Introduction, the temperature T0 at which the Hawking-

Page transition line meets the black hole instability line depends on the pattern of chemical

potentials. For three equal chemical potentials (or equivalently three equal charges), T0 = 0.

With a single non-zero charge, the temperature T0 = (πR)−1. In every case, the chemical

potential at the intersection of the instability and Hawking-Page transition lines is 1/R.

This intersection corresponds to the point where the black hole horizon radius shrinks to

zero. Since the phase diagram in the strong coupling region is obtained by comparing the
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values of the action for black hole and AdS solutions at the same temperature, the region

of the phase diagram below T0 is completely undetermined.

Ignoring the low temperature region (where limited knowledge on both sides prevents

a clear comparison), there is one glaring difference between the weak and strong coupling

phase diagrams of figure 6 — the non-perturbative metastability of the deconfined plasma

phase when the maximal chemical potential exceeds 1/R. If there is a smooth interpolation

between weak and strong coupling, then there must be a similar non-perturbative black

hole instability, with an exponentially suppressed nucleation rate whose exponent scales

linearly with Nc. No such instability, with an onset precisely at µ = 1/R, is currently

known in the gravity dual.

6. Outlook

There are a variety of possible extensions which should be feasible and which would shed

light on some of the issues discussed in this paper.

On the gravitational side, investigation into non-perturbative instabilities of RN-AdS

black holes (and their generalizations to N = 8 gauged supergravity) is clearly needed.

Our weak coupling results, plus presumed smooth interpolation between weak and strong

coupling, requires the existence of a non-perturbative black hole instability with an onset

(at µ = 1/R) prior to the known point of perturbative instability.

Under gauge/string duality, the eigenvalues of N = 4 SYM scalar fields are identified

with the locations of D3-branes in Type IIB string theory. The R-charged black hole solu-

tions arise from spinning D3-branes [18]. This suggests that the string theory manifestation

of the non-perturbative gauge theory instability should involve a stack of D3-branes, for

sufficiently high spin, splitting up into widely separated branes. For µ > 1/R, the force

between branes at sufficiently large separation should become repulsive. Since the domi-

nant instability in the gauge theory involves a large excursion of a single eigenvalue, the

dominant high-spin D3-brane instability should involve a single brane separating from the

rest of the stack. It should be possible to verify this scenario with a probe-brane analysis

in the RN-AdS background.

Alternatively, one may consider the analogue of non-perturbative gauge theory in-

stabilities involving large excursions by multiple eigenvalues, namely a process in which

a stack of Nc coincident D3-branes separates into a multi-stack configuration, with each

stack containing an order one fraction of the Nc branes. (figure 5c and d correspond to

the simplest case of a symmetric two-stack instability.) Though subdominant, this decay

process should be well described by supergravity approximations.

Finding such an instability for spinning D3-branes, with the expected onset threshold

of µ = 1/R, would provide further evidence supporting a smooth interpolation between

weak and strong coupling in N = 4 supersymmetric Yang-Mills theory (and the validity

of AdS/CFT duality). It might also clarify the puzzle, mentioned in section 5, involving

the behavior of the gravitational system with large but unequal chemical potentials, at

temperatures below T0 (where the horizon radius of the R-charged black hole shrinks to
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zero). At the moment, no upper limit on the chemical potential of the gravitational phase

diagram in this regime in known.

Turning now to the weak coupling analysis, the order of the confinement/deconfine-

ment phase transition at non-zero coupling remains uncertain, for the reasons discussed

in section 2. Its determination requires a three-loop computation similar to (but more

complicated than) the one carried out for large Nc pure Yang-Mills theory in ref. [8].

This computation, if carried out for non-zero chemical potentials, would also allow one to

determine how weak coupling corrections shift the location of the transition line, which is

of particular interest at low temperature where the transition line approaches the spinodal

decomposition line. If the interpolation between weak and strong coupling in N = 4 SYM

is smooth, then the confinement/deconfinement transition is expected to be first order.

Confirming (or refuting) this directly would clearly be desirable.

Finally, our weak coupling analysis focused on the high temperature regime, T À
1/R. Extending the treatment to T . 1/R would be valuable. For T ¿ 1/R one has

a large time circle and a small spatial sphere, so the non-zero angular momentum modes

on the three-sphere are heavy and may be integrated out, leading to an effective one

dimensional quantum mechanics. Analysis of the resulting effective theory should reveal

the behavior of the spinodal decomposition phase boundary in the low temperature region,

determine whether it intersects the confinement/deconfinement transition line at a non-zero

temperature T0, and perhaps even reveal a distinct high density, low temperature phase.
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A. Derivation of matrix model with chemical potentials

To reduce the partition function of the free theory (constrained by Gauss’ law) to the matrix

model, as sketched in section 2.3, one first separates the zero mode of A0 by replacing

Aν(x) −→ Ãν(x) + δν,0 a/g , (A.1)

where a is a constant traceless Hermitian Nc × Nc matrix, and Ã0 is orthogonal to the

constant mode. Without loss of generality, we may assume that a is diagonal and we

denote its entries (or eigenvalues) by {qm |m = 1, . . . , Nc} where the qm are all real and

satisfy
∑

m q
m = 0. One plugs this shifted form of the gauge field into the Lagrangian (2.19)

and then sends g → 0. It is convenient to choose the gauge defined by the gauge-fixing

term,

tr{(∂νÃν + i [a, Ã0])2} . (A.2)
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Define, for convenience, qmn ≡ qm − qn and ¤mn ≡ (∂ν + iqmnδν,0)2. The Lagrangian of

the free theory may be rewritten as the quadratic form

L̂quad =
∑

m,n

{
(Ãν)∗mn(−¤mn)(Ãν)mn

+ ((Xp)
∗
mn, (Yp)

∗
mn)

(
−¤mn + 1− µ2

p 2iµp(∂0 + iqmn)

−2iµp(∂0 + iqmn) −¤mn + 1− µ2
p

)(
(Xp)mn
(Yp)mn

)

+ (ψ̄i)
∗
mn(i∂/− γ0 q

mn − iµ̃iγ0γ5)(ψi)mn

}
, (A.3)

where the color indices m,n are now explicit, with (Ãν)mn ≡ Ãaν (T a)mn and likewise for

the other fields.

table 2 in section 2.3 lists the eigenvalues of the spatial small fluctuation operators

whose eigenfunctions are (scalar, vector, or spinor) spherical harmonics. Denote these

eigenvalues by ∆2
g, ∆2

s and ∆2
f for the transverse spatial gauge, conformal scalar, and

spinor fields, respectively. Denote the Matsubara frequencies by ωk, for either bosons or

fermions (as determined by context). Then the contribution to lnZ from the gauge bosons

and ghosts (equal to − 1
2 times the logarithm of their functional determinant) is

lnZg = −1
2

[∑

k

∑

m,n

tr ln{(ωk + qmn)2 + ∆2
g} − tr ln(ω2

k + ∆2
g)

]
. (A.4)

The trace is over the space of transverse vector fields on S3. The contribution from gauge-

fixing ghosts cancels the contributions from Ã0 and longitudinal part of the spatial gauge

field, thereby effectively leaving two transverse gauge field degrees of freedom. (This factor

of two is included in the degeneracy factor for transverse vector fields listed in table 2.)

The second term compensates for the fact that there are really only Nc−1 independent

diagonal components of the gauge field, not Nc, because we are dealing with the gauge

group SU(Nc).

Block-diagonalizing the linear operator in (A.3) for the scalars (by working in the

eigenspaces of ∂0 and the spatial Laplacian) and taking the determinant in each block

gives the scalar contribution of

lnZs = −1
2

∑

k

∑

p

[∑

m,n

tr ln
[
{(ωk + qmn + iµp)

2 + ∆2
s}{(ωk + qmn − iµp)2 + ∆2

s}
]

− tr ln
[
{(ωk + iµp)

2 + ∆2
s}{(ωk − iµp)2 + ∆2

s}
]]
. (A.5)

Similarly, the fermions give

lnZf = 1
2

∑

k

∑

i

[∑

m,n

tr ln
[
{(ωk + qmn + iµ̃i)

2 + ∆2
f}{(ωk + qmn − iµ̃i)2 + ∆2

f}
]

− tr ln
[
{(ωk + iµ̃i)

2 + ∆2
f}{(ωk − iµ̃i)2 + ∆2

f}
]]
. (A.6)
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In integrating out the fermions, it is essential to recall that ψi is a Majorana fermion. So ψi
and ψ̄i are not independent and the Grassmann integral gives the Pfaffian of (∂/+ iγ0 q

mn−
µ̃iγ0γ5), not the determinant.

The Matsubara frequency sums can be carried out (most easily by differentiating with

respect to ∆2, performing the sum, and then integrating back in ∆2) and yield

lnZg = −1
2

∑

m,n

tr ln
[
{1− e−β(∆g+iqmn)}{1− e−β(∆g−iqmn)}

]
+ tr ln(1− e−β∆g ) , (A.7a)

lnZs = −
∑

p

[
1
2

∑

m,n

tr ln
[
{1 − e−β(∆s+µp+iqmn)}{1 − e−β(∆s+µp−iqmn)}

× {1− e−β(∆s−µp+iqmn)}{1 − e−β(∆s−µp−iqmn)}
]

− tr ln
[
{1− e−β(∆s+µp)}{1− e−β(∆s−µp)}

]]
, (A.7b)

lnZf =
∑

i

[
1
2

∑

m,n

tr ln
[
{1 + e−β(∆f+µ̃i+iqmn)}{1 + e−β(∆f+µ̃i−iqmn)}

× {1 + e−β(∆f−µ̃i+iqmn)}{1 + e−β(∆f−µ̃i−iqmn)}
]

− tr ln
[
{1 + e−β(∆f+µ̃i)}{1 + e−β(∆f−µ̃i)}

]]
. (A.7c)

In these expressions, we have dropped temperature independent terms that do not con-

tribute to the thermodynamics of the theory. To evaluate the remaining traces (over

transverse vector, scalar, or spinor fields on S3), it is convenient to expand each logarithm

in a power series. For example (taking part of the scalar contribution)

−
∑

p

[
1
2

∑

m,n

tr ln{1 − e−β(∆s+µp+iqmn)} − 1
2 tr ln{1− e−β(∆s+µp)}

]

= 1
2

∑

p

∞∑

h=0

(h+ 1)2
∞∑

l=1

1

l
e−lβ∆se−lβµp

(∑

m,n

e−ilβq
m
eilβq

n − 1

)

= 1
2

∞∑

l=1

1

l

( ∞∑

h=0

(h+ 1)2e−lβ∆s

)(∑

p

e−lβµp
)(∑

m

e−ilβq
m
∑

n

eilβq
n − 1

)

= 1
2

∞∑

l=1

1

l

xl + x2l

(1− xl)3

(∑

p

xlµp

)
(
trU l trU †l − 1

)
, (A.8)

where x ≡ e−β = e−1/T and U ≡ exp[iβa] is an Nc×Nc unitary matrix. Similarly, one can

work out the other logarithms. One finds

lnZg =

∞∑

l=1

1

l

6x2l − 2x3l

(1− xl)3

(
trU l trU †l − 1

)
, (A.9)

lnZs =

∞∑

l=1

1

l

xl + x2l

(1− xl)3




3∑

p=1

(xlµp + x−lµp)


(trU l trU †l − 1

)
, (A.10)
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lnZf =
∞∑

l=1

(−1)l+1

l

2x
3
2
l

(1− xl)3

[
4∑

i=1

(xlµ̃i + x−lµ̃i)

]
(
trU l trU †l − 1

)

=

∞∑

l=1

(−1)l+1

l

2x
3
2
l

(1− xl)3




3∏

p=1

(x
1
2
lµp + x−

1
2
lµp)


 (trU l trU †l − 1

)
, (A.11)

where the definition (2.12) of the effective fermion chemical potentials µ̃i was used in the

last line.

Combining these terms and defining

Seff(U) ≡ − lnZg − lnZs − lnZf , (A.12)

gives the result quoted earlier in (2.25) and (2.26). The exponential e−Seff (U) gives the

result of integrating out all fields except the zero mode of A0. What remains is a single

integral over the matrix U , as shown in (2.27).

B. One-loop matching for ESYM3

B.1 Coefficient of the identity operator

The leading contribution to the coefficient of the identity operator in ESYM3 may be

obtained by computing the functional determinants which result from integrating out the

heavy modes, neglecting interactions. To evaluate the contributions from the heavy bosonic

modes, first consider an O(2) invariant theory (in flat space) with two real massive scalar

fields. One may easily evaluate the contribution to the free energy produced by integrating

out these fields. With a non-zero chemical potential, the high temperature expansion of

the result is [24]

F

V = −π
2

45
T 4 +

m2−2µ2

12
T 2 − (m2−µ2)3/2

6π
T + · · · , (B.1)

where V is the volume of the space. This result contains the contributions of both the heavy

non-zero Matsubara modes and the light zero-frequency mode. For our purposes, the light

mode contribution must be subtracted out. The zero Matsubara mode contribution to the

above expression is given by the integral,

F n=0

V = T

∫
d3p

(2π)3
ln(p2 +m2 − µ2) = −(m2−µ2)3/2

6π
T . (B.2)

This is exactly the third term in F/V. This was inevitable — such a non-analytic term

is related to the infrared behavior of the theory and can only come from fluctuations on

scales large compared to 1/T . Therefore, the heavy mode contribution is

F n6=0

V = −T 4

{
π2

45
− 1

12

(
m2−2µ2

T 2

)
+O

(
µ2m2

T 4
,
m4

T 4
,
µ4

T 4

)}
. (B.3)
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In N = 4 SYM, we have 3N 2
c such pairs of scalars. Moreover, gauge bosons and ghosts

contribute N 2
c times the above expression with m = µ = 0. Hence the total bosonic

contribution is,

F n6=0
B

V = −N2
c T

4

{
4π2

45
− 1

12

[
3

T 2R2
− 2(µ2

1 + µ2
2 + µ2

3)

T 2

]
+O(λ2)

}
, (B.4)

where we have set m2 = 1/R2. Because we are working in the regime where 1/(TR)2 ∼
µ2/T 2 ∼ λ, this result is correct through O(λ2).

The analogous contribution from one Majorana fermion with chemical potential µ

[introduced as in eq. (2.14)] is

F

V = −T 4

(
7π2

360
+

µ2

12T 2
+

µ4

24T 4

)
. (B.5)

Since fermions do not have zero-frequency modes, there is no light mode contribution

to subtract. We have altogether 4N 2
c Majorana fermions with four different chemical

potentials, so the total one-loop fermion contribution is

FF
V = −N2

c T
4

{
7π2

90
+

1

12

(
µ̃2

1 + µ̃2
2 + µ̃2

3 + µ̃2
4

T 2

)
+O(λ2)

}
. (B.6)

Combining the boson and fermion results, we obtain the one-loop contribution to the

free energy density, expanded in powers of 1/(TR) and µ/T through O(1/T 2),

F1−loop

V = −N
2
c T

4

12

{
2π2 − 3

T 2R2
+

2(µ2
1 + µ2

2 + µ2
3)

T 2
+
µ̃2

1 + µ̃2
2 + µ̃2

3 + µ̃2
4

T 2
+O(λ2)

}
.

(B.7)

However, this is not a complete result. Because we are interested in the regime where

1/(TR)2 ∼ µ2/T 2 ∼ λ, two-loop contributions will yield O(λ) corrections to the free

energy density which are comparable in size to the curvature and chemical potential de-

pendent parts of the one-loop result. The required two-loop contribution may be evaluated

ignoring curvature and chemical potential corrections altogether, since these will only give

subleading O(λ/(TR)2) or O(λµ2/T 2) terms, which are both order λ2. One finds [31 – 33],

F2−loop

V =
1

4
N2
c T

4 λ+O(λ2) . (B.8)

With massless fields in flat space, there are no light-mode contributions which need to be

subtracted out. Thus, the coefficient of the identity operator in ESYM3, equal to β times

the free energy density due to the heavy modes, is given by

f = −N
2
c T

3

12

{
2π2 − 3λ− 3

T 2R2
+

2(µ2
1 + µ2

2 + µ2
3)

T 2
+
µ̃2

1 + µ̃2
2 + µ̃2

3 + µ̃2
4

T 2
+O(λ2)

}
.

(B.9)
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(S1)

(S4)

(S3)(S2)

(S5)

Figure 7: One-loop self-energy diagrams for the scalar fields. The solid lines are scalars, curly

lines are gauge bosons, and dotted lines are Majorana fermions. The final diagram (S5) denotes the

wavefunction renormalization counterterm. The external lines are light modes with small spatial

momenta, while the fields running inside the loops are heavy modes.

B.2 Scalar thermal mass

The lowest-order thermal mass correction for the scalar fields comes from the self-energy

diagrams shown in figure 7. As noted in section 3, to extract the O(λT 2) contribution

to the mass (squared), one may evaluate these diagrams in flat space and without chem-

ical potentials. Including curvature and chemical potential corrections in these diagrams

would give subleading O(λ2) terms, which are beyond the accuracy we need. Since we

are interested in the construction of ESYM3, only the heavy mode contributions to each

loop should be included. To obtain the thermal mass, it is sufficient to evaluate these dia-

grams at zero external momentum. But we will keep the external (Euclidean) momentum

p = (0, ~p ) non-zero (but small compared to T ) in order to extract the one-loop wavefunc-

tion renormalization for the scalars, which will be useful in the next subsection. We use

dimensional continuation and the MS renormalization scheme, and denote the arbitrary

renormalization scale by Λ. Integrals are carried out in the standard manner with the

convention that ∑∫ ′

p
≡
(
eγEΛ2

4π

)ε
T
∑

n6=0

∫
d3−2εp

(2π)3−2ε
. (B.10)

The prime in the left-hand side signifies the omission of the zero frequency mode in bosonic

loop integrals. We use a Lorentz gauge-fixing term with arbitrary gauge parameter α. The

dependence on α will drop out of the result for the thermal mass correction, but keeping

α arbitrary serves as a useful check on the calculation.

Evaluating the diagrams of figure 7 is straightforward and one finds:

(S1) = − 5

12
λT 2 , (B.11a)

(S2) = − 1

12
(3 + α)λT 2 , (B.11b)

(S3) =
α

12
λT 2 +

λ

16π2

(1

ε
+ Lb

)
(3−α) p2 +O

( p4

T 2

)
, (B.11c)
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(S4) = −1

3
λT 2 − λ

4π2

(1

ε
+ Lf

)
p2 +O

( p4

T 2

)
, (B.11d)

(S5) = −δZ(1) p2 , (B.11e)

where δZ(1) is the one-loop wavefunction renormalization counterterm. We have defined

Lb ≡ ln
Λ2

T 2
− 2 ln(4π) + 2γE , Lf ≡ ln

Λ2

T 2
− 2 ln(4π) + 2γE + 4 ln 2 , (B.12)

with γE is Euler’s constant. The sum of these diagrams gives (minus) the hard mode

contribution to the one-loop self-energy,

−Πhard(p) ≡ (S1) + (S2) + (S3) + (S4) + (S5)

= −λT 2 + p2 λ

16π2

{
(3−α)Lb − 4Lf −

1+α

ε

}
− p2 δZ(1) +O

( p4

T 2

)
. (B.13)

Choosing

δZ(1) = −(1 + α)
λ

16π2ε
(B.14)

absorbs the logarithmic divergence. As always, temperature independent renormalization

suffices to remove UV divergences at any temperature. The hard-mode self-energy is thus

−Πhard(p) = −λT 2 + p2 λ

16π2
{(3−α)Lb − 4Lf}+O

( p4

T 2

)
. (B.15)

The resulting renormalized scalar propagator, in flat space and without chemical po-

tentials, at separations large compared to 1/T , is

〈ΦA(x)ΦB(y)〉 = δAB T

∫
d3p

(2π)3
ei~p·(~x−~y) G(p) , (B.16)

with

G−1(p) = p2 + Πhard(p) + Πsoft(p)

= p2(1 +A) + λT 2 + Πsoft(p) +O(p4/T 2) +O(λ2T 2) , (B.17)

where A ≡ − λ
16π2 {(3−α)Lb − 4Lf} and Πsoft(p) is the self-energy contribution due to soft

modes.

In view of the relation (3.1), the long distance correlator (B.16) should be matched

with Z3T 〈Φ̃A(x)Φ̃B(y)〉, computed in the effective theory. Again neglecting curvature and

chemical potential corrections, the effective theory correlator is

〈Φ̃A(x)Φ̃B(y)〉 = δAB

∫
d3p

(2π)3
ei~p·(~x−~y) G̃(p) , (B.18)

with

G̃−1(p) = p2 + δm2(T ) + Πsoft(p) , (B.19)
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(Q1) (Q3)

(Q4) (Q5) (Q7)(Q6)

(Q2)

Figure 8: One loop diagrams which lead to quartic scalar interactions in the high temperature

effective theory. As in figure 7, solid, curly, and dotted lines denote scalar, gauge boson, and

fermion lines, respectively. In Diagram (Q6), it is most convenient to treat the external fields X

and Y separately due to their different Yukawa couplings. Diagram (Q7) denotes the contribution

induced by wavefunction renormalization. Not shown explicitly are the various permutations of

each diagram.

and Πsoft(p) is the same soft mode contribution as in (B.17). Therefore, the parameters of

the effective theory must be adjusted to make G̃−1(p)/Z3 coincide with G−1(p). Through

one-loop order, the required matching is

Z3 = (1 +A)−1 = 1 +
λ

16π2
{(3−α)Lb − 4Lf}+O(λ2) , (B.20)

and

δm2(T ) = λT 2 +O(λ2T 2) . (B.21)

B.3 Scalar quartic coupling

Calculating the one-loop thermal corrections to the scalar quartic interactions which will

appear in the high temperature effective theory requires evaluation of the one-loop four-

point correlator of light-mode scalar fields, at zero external momentum. The analysis is

similar to the computation by Nadkarni [37] of the quartic interactions of A0 in EQCD.

The required diagrams are shown in figure 8. Once again, only heavy modes should be

regarded as running around the loops, and one may work directly in flat space, ignoring

curvature and chemical potential corrections.

We evaluate these diagrams using dimensional continuation and MS renormalization,

as described in appendix B.2, and an arbitrary gauge fixing parameter α, even though

choosing Landau gauge (α= 0) would reduce the number of the diagrams to be computed

(namely diagrams (Q3), (Q4), and (Q5) would all vanish at zero external momentum).
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Nevertheless, retaining an arbitrary gauge fixing parameter in order to verify the cancella-

tion of α dependence in the resulting effective quartic coupling serves as a useful consistency

check.

To express the results compactly, we will use {V a} to denote Hermitian SU(Nc) adjoint

representation basis matrices, with22

(V a)bc ≡ −ifabc , (B.22)

and define the following index structures:

(Γ1)abcdABCD ≡ N−2
c

[
tr(V aV bV cV d) (δAB δCD + δAD δBC − 2δAC δBD)

+ tr(V aV bV dV c) (δAC δBD + δAB δCD − 2δAD δBC)

+ tr(V aV cV bV d) (δAC δBD + δAD δBC − 2δAB δCD)
]
, (B.23a)

(Γ2)abcdABCD ≡ N−2
c

[
tr(V aV bV cV d) (δAB δCD + δAD δBC)

+ tr(V aV bV dV c) (δAC δBD + δAB δCD)

+ tr(V aV cV bV d) (δAC δBD + δAD δBC)
]
. (B.23b)

The tree-level quartic scalar vertex is −2λ (Γ1)abcdABCD .

The diagrams of figure 8 can be computed in a straightforward manner, and one finds

(Q1) =
λ2

16π2

(1

ε
+ Lb

) [
4(Γ1)abcdABCD + 5(Γ2)abcdABCD

]
, (B.25a)

(Q2) = (3 + α2)
λ2

16π2

(1

ε
+ Lb

)
(Γ2)abcdABCD , (B.25b)

(Q3) = −2α2 λ2

16π2

(1

ε
+ Lb

)
(Γ2)abcdABCD , (B.25c)

(Q4) = α2 λ2

16π2

(1

ε
+ Lb

)
(Γ2)abcdABCD , (B.25d)

(Q5) = −4α
λ2

16π2

(1

ε
+ Lb

)
(Γ1)abcdABCD , (B.25e)

(Q6) = −8
λ2

16π2

(1

ε
+ Lf

) [
(Γ1)abcdABCD + (Γ2)abcdABCD

]
, (B.25f)

22Useful adjoint representation trace identities include

tr(V aV b) = Nc δ
ab , (B.24a)

tr(V aV bV c) = − i
2
Nc f

abc , (B.24b)

tr(V aV bV cV d) = Nc tr(T aT bT cT d + T bT aT dT c) + 1
2

(δabδcd + δacδbd + δadδbc) , (B.24c)

tr(V aV bV cV d)− tr(V bV aV cV d) = −2Nc f
abefcde , (B.24d)

where {T a} are the fundamental representation basis matrices.
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(Q7) = −4λ δZ(1) (Γ1)abcdABCD . (B.25g)

Diagram (Q6) requires a special attention because the Xp and Yp scalars have different

Yukawa couplings. Considering the various cases (such as 〈X a
p X

b
q Y

c
r Y

d
s 〉) and taking

care of the appropriate permutations, one finds the simple expression above. Inserting

the previously determined one-loop scalar wavefunction renormalization factor δZ (1) [from

eq. (B.14)] into the result (Q7) gives

(Q7) = 4
λ2

16π2ε
(1 + α) (Γ1)abcdABCD . (B.26)

Combining all terms, we find that the amputated 1PI scalar 4-point function, at zero

momentum, is

〈Φa
AΦb

BΦc
CΦd

D〉1PI = (Γ1)abcdABCD

(
−2λ +

λ2

4π2
[(1−α)Lb − 2Lf ]

)

+ (Γ2)abcdABCD

λ2

2π2
[Lb − Lf ] +O(λ3) . (B.27)

Rescaling the field according to relations (3.1) and (B.20) removes the remaining gauge

fixing parameter dependence and produces the equivalent ESYM3 1PI 4-point function,

〈Φ̃a
AΦ̃b

BΦ̃c
CΦ̃d

D〉1PI = −2λT 2 (Γ1)abcdABCD − (ln 4)
λ2T 2

π2

[
(Γ2)abcdABCD − (Γ1)abcdABCD

]
+O(λ3) .

(B.28)

The first term is the vertex which arises from the commutator squared interaction directly

inherited from the full theory, while the order λ2 correction comes out to be remarkably

simple. Both terms must be produced as tree level vertices in the three-dimensional effective

theory. The required quartic interaction terms in the ESYM3 effective Lagrangian are

1
2g

2
3 tr(i[Φ̃A, Φ̃B ])2 +

ln 2

2π2

g4
3

T
tr(Φ̃a

AVaΦ̃
b
BVb)

2 , (B.29)

with g2
3 ≡ g2T . All gauge fixing parameter dependence and 1/ε poles have canceled, as

required. The ln(Λ2/T 2) terms in Lb and Lf have also dropped out. This was also required,

since N = 4 SYM at zero temperature is a conformal theory in which the coupling does not

run, and turning on a temperature does not change the short distance behavior.

C. Background field method

We wish to evaluate the complete one-loop effective potential for the scalar fields using

background field techniques. We will restrict our analysis to the special case where the

background scalar fields take values along flat directions of the tree-level potential. This

is sufficient for our purposes, and simplifies the calculation. We carry out the calculations

in flat space, and neglect chemical potentials. Under our assumptions that 1/R2 and

µ2 are both of order λT 2, the tree-level contributions from the curvature and chemical

potential induced mass terms will be comparable to one-loop corrections to the effective
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potential computed in flat space with µ = 0. Including curvature and chemical potential

corrections in the evaluation of the one-loop potential would change the result by an amount

comparable to neglected two-loop contributions.

In the flat space Lagrangian, shown in eq. (2.19) but without mass and chemical

potential terms, we shift the scalar fields by constants,

ΦA → Φ̄A + σA , (C.1)

with Φ̄A constant fields taking values in the flat directions, and σA, are arbitrary fluctua-

tions about the constant background. The background fields (viewed as Nc×Nc matrices)

are simultaneously diagonal (up to an irrelevant gauge transformation).

Among the quadratic terms in the shifted Lagrangian, there are terms which mix

the gauge and scalar fields. These may be eliminated by employing the Rξ-gauge with

gauge-fixing term
1

ξ
tr
{

(∂µAµ − iξ g[σA, Φ̄A])2
}
. (C.2)

We further set ξ = 1 to simplify the computation, as this choice eliminates off-diagonal

quadratic terms which mix σA and σB for A 6= B. We denote the matrix components of

the fields by indices m and n so that, for example, (σA)mn ≡
∑

a σ
a
A(T a)mn.

Let λmA denote the mth eigenvalue of the constant background field Φ̄A and define, for

convenience,

M2
mn ≡ g2

∑

A

(λmA − λnA)2 . (C.3)

Note that m and n are not to be summed over in the definition of M 2
mn. The resulting

quadratic terms in the shifted Lagrangian are

∑

m,n

[
(Aµ)∗mn

(
−∂2 +M2

mn

)
(Aµ)mn + (σA)∗mn

(
−∂2 +M2

mn

)
(σA)mn

+ (ψ̄i)mn

[
δij i∂/− g

{
αpij + iγ5 β

p
ij

}
(λmp −λnp )

]
(ψj)mn

]
. (C.4)

In carrying out the Gaussian integrals, one finds that the logarithms of the functional

determinants from all the three contributions simplify to the generic form

I =
∑∫ ′

p
ln(p2 +M2

mn) , (C.5)

where the sum-integral is defined in eq. (B.10). This integral is standard after Arnold and

Espinosa [38], and yields

Ibose

π2T 4
= − 1

45 + 1
3

( M2
mn

4π2T 2

)
− 1

2

(1

ε
+Lb

)( M2
mn

4π2T 2

)2
−
∞∑

l=3

8
(2l−5)!!

(2l)!!
ζ(2l−3)

(−M2
mn

4π2T 2

)l
,

(C.6a)

Ifermi

π2T 4
= 7

360 − 1
6

( M2
mn

4π2T 2

)
− 1

2

(1

ε
+Lf

)( M2
mn

4π2T 2

)2
−
∞∑

l=3

(4l−8)
(2l−5)!!

(2l)!!
ζ(2l−3)

(−M2
mn

4π2T 2

)l
,

(C.6b)

– 43 –



J
H
E
P
0
9
(
2
0
0
6
)
0
2
7

where Ibose and Ifermi are contributions from the bosons and fermions, respectively. In

these results, O(ε) terms have been discarded and the quantities Lb and Lf are defined in

eq. (B.12).

For each color component, the gauge field, six scalar fields, and gauge fixing ghosts

contribute (4 + 6− 2) = 8 times β
2 Ibose to the (three dimensional) effective potential, while

the fermions contribute −8 times β
2 Ifermi. The resulting effective potential, for background

fields lying along flat directions, is thus

V (Φ̄A) = 1
2π

2T 3
∑

m,n

[
− 1

3
+

(
M2
mn

π2T 2

)
+ (ln 2)

(
M2
mn

π2T 2

)2

+

∞∑

l=3

8 (1− 4−l+2)
(2l−5)!!

(2l)!!
ζ(2l−3)

(
−M

2
mn

π2T 2

)l ]
. (C.7)

The 1/ε poles and all dependence on the arbitrary renormalization scale has canceled, as

required for a physical quantity.

We would like to express the result (C.7) in terms of the original fields Φ̄A. To do so,

note that the adjoint representation of the field, (Φ̄adj
A )ab ≡ iΦ̄b

Af
abc, may also be written

as

(Φ̄adj
A )ab = 2 tr(Ta[Φ̄A, Tb]) . (C.8)

Since the fields Φ̄A are assumed to take values in flat directions, a Cartan subalgebra may

chosen for which Φ̄A is diagonal with the entries λmA . Therefore

tr(Φ̄adj
A Φ̄adj

B ) = 2
∑

a

tr(Ta[Φ̄A, [Φ̄B , Ta]])

= 2
∑

a,m,n

(Ta)nm(λmA−λnA)(λmB−λnB)(Ta)mn

=
∑

m,n

(λmA−λnA)(λmB−λnB) , (C.9)

where the last step used the identity
∑

a(Ta)ij(Ta)kl = 1
2 (δilδjk − 1

Nc
δijδkl). Hence

tr[g2
∑

A Φ̄adj
A Φ̄adj

A ] = g2
∑

A,m,n(λmA−λnA)2 =
∑

m,nM
2
mn. Since the sum of the eigenvalues

λmA must vanish (because Φ̄A is traceless), this may also be written in the form

1
2g

2T 2 tr(Φ̄adj
A Φ̄adj

A ) = 1
2T

2
∑

m,n

M2
mn = g2T 2Nc

∑

A,m

(λmA )2 = λT 2 tr(Φ̄A)2 , (C.10)

which shows that the quadratic part of the effective potential (C.7) agrees with the previ-

ously derived thermal mass correction (3.6). [Note that, to the lowest order, the rescaling

from ΦA to Φ̃A in (3.1) is just a factor of
√
T .] More generally, we have

tr
[(
g2
∑

A

Φ̄adj
A Φ̄adj

A

)l]
=
∑

m,n

(
M2
mn

)l
, (C.11)

so the effective potential (C.7) (along flat directions) may be expressed in terms of adjoint

representation traces as shown in eq. (3.11). In particular, the quartic term of (C.7) is
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β
2π2 (ln 2) g4 tr[(Φ̄adj

A Φ̄adj
A )2] and this agrees, for commuting fields, with the diagrammatic

result (B.29).23
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